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Information Transfer between Dynamical System Components
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We present a rigorous formalism of information transfer for systems with dynamics fully known. This
follows from an accurate classification of the mechanisms for the entropy change of one component into a
self-evolution plus a transfer from the other component. The formalism applies to both continuous flows
and discrete maps. The resulting transfer measure possesses a property of asymmetry and is qualitatively
consistent with the classical measures. It is further validated with the baker transformation and the Hénon
map.
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Information transfer between the components of a dy-
namical system has been of interest since decades ago
[1,2]. It is usually investigated as a subfield of nonlinear
signal coherence analysis in the context of some specific
discipline [3], but its concept is also frequently seen in
general physics literature. The well-studied baker trans-
formation is such an example: It has been argued that
information is transferred continually from the stretching
direction to the folding direction [4,5], although the trans-
fer is yet to be quantified. Recently, there comes much
renewed interest with this problem, motivated mainly by
the research of weather predictability and climate varia-
bility, where information transfer plays an important role
[6].

So far, the formalisms of information transfer are mostly
data-based, the widely used transfer measures including
the time-delayed mutual information [1] and, in the frame-
work of a Markov chain, the more sophisticated transfer
entropy by Schreiber [2]. In this study, we will show that,
when dynamics is fully known (as in the above physical
problems), the measure of information transfer can be
rigorously formulated.

We rely on a two-dimensional (2D) system to elucidate
the fundamental idea. The formalism on a more generic
basis for arbitrarily many dimensions will follow later [7].
We first derive the formula with a continuous flow, then
extend it to deal with more complicated discrete mappings.
The result is applied to study two classical problems where
the physics of information transfer is qualitatively clear for
validation.

Consider a 2D autonomous system:

dx
dt
� F�x�; (1)

where F � �F1; F2�, and x � �x1; x2� 2 �. In this study,
the sample space � is assumed to be a direct product of
�1 and �2. Let fX; tg be a stochastic process, X �
�X1; X2� the random variables corresponding to (x1; x2),
and � � ��x1; x2; t� the probability density distribution at
t. We need to find how the joint entropy of X1 and X2,
which is defined as
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H�t� � �
ZZ

�
� log�dx1dx2; (2)

evolves with time. For notational simplicity, we will drop
the � in the double integral, and all double integrations
henceforth are understood to be over the entire sample
space, unless otherwise indicated.

Associated with (1), there is a Liouville equation:

@�
@t
�

@
@x1
��F1� �

@
@x2
��F2� � 0: (3)

Multiplication by (1� log�) gives

@�� log��
@t

�F �r�� log�����1� log��r�F�0: (4)

Integrating,

dH
dt
�
ZZ
r � �� log�F�dx1dx2 �

ZZ
�r � Fdx1dx2 � 0:

In practice (particularly for weather systems or climate
models), � generally vanishes at boundaries; i.e., extreme
events have zero probability. This assumption may also be
weakened to include extreme events but with boundary
fluxes balanced in the x1 and x2 directions, respectively.
But, for practical purposes, we stick to the former assump-
tion. The second term in the above equation thus vanishes.
So dH

dt �
RR
��x1; x2�r � Fdx1dx2 � 0, or

dH
dt
� E�r � F�: (5)

Equation (5) states that the time rate of change of H is due
to the expectation of the divergence of F. In other words,
the change of entropy is controlled totally by the contrac-
tion or expansion of the phase space. Soon we will see that
the physics revealed by (5) is the key to the establishment
of our transfer formalism.

If only one component is involved, entropy along that
coordinate can also be defined but with the marginal dis-
tribution. Suppose we are interested in the entropy evolu-
tion of the first component. The marginal density is
�1�x1; t� �

R
�2
��x1; x2; t�dx2. The evolution equation of
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�1 is derived by integrating (3) with respect to x2 over the
subspace �2:

@�1

@t
�

@
@x1

Z
�2

�F1dx2 � 0: (6)

The third term in the original equation has been integrated
out with the compact support assumption for �. Following
the same procedure as above, the entropy in direction 1
H1�t� � �

R
�1
�1 log�1dx1 evolves as

dH1

dt
�
ZZ �

log�1
@��F1�

@x1

�
dx1dx2: (7)

Through integration by parts, this may also be written as

dH1

dt
� �

ZZ
�
�
F1

�1

@�1

@x1

�
dx1dx2: (8)

Equation (8) states how H1 evolves with time. The
evolutionary mechanism can be decomposed into two
parts: One is from X1 itself, which we write as dH�1=dt;
another from X2 through the coupling in the joint density
distribution �. Clearly, the latter is the information transfer.
We want to separate it out from the intertwined mechanism
in the right-hand side of (8).

The separation is made through a heuristic reasoning
based on what one observes with the joint entropy and (5):
The time change of H depends only on r � F. One may
argue that the entropy with X1 changes only with @F1=@x1

if it evolves on its own. Paralleling (5) then should be an
equation:

dH�1
dt
� E

�
@F1

@x1

�
�
ZZ

�
@F1

@x1
dx1dx2: (9)

The rate of entropy transfer from X2 to X1 is then

T2!1 �
d
dt
�H1 �H

�
1� � �

ZZ �F1

�1

@�1

@x1
�
@F1

@x1

�
�dx1dx2

� �
ZZ

�2j1�x2jx1�
@�F1�1�

@x1
dx1dx2: (10)

Likewise, the transfer of entropy from x1 to x2 is

T1!2 � �
ZZ

�1j2�x1jx2�
@�F2�2�

@x2
dx1dx2: (11)

As elaborated by Schreiber [2], a desired property about
the information transfer is its asymmetry between the
components. Particularly, in system (1), if F1 has no de-
pendence on x2, then x1 evolves on its own. That is to say,
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there should be no information transfer from random vari-
able component X2 to X1, albeit the transfer in the other
direction may be nonzero when F2 depends on both x1 and
x2. This is true with the transfers defined in (10) and (11).
In fact, when F1 � F1�x1�,

T2!1 � �
Z

�1

�Z
�2

�2j1�x2jx1�dx2

�
@�F1�1�

@x1
dx1

� �
Z

�1

@�F1�1�

@x1
dx1 � 0:

It merits noting that, because of the asymmetry, infor-
mation transfer is distinctly different from transfer of other
quantities such as energy: Information does not have to be
lost in one component in order for another component to
receive it. As elucidated above, while X1 gains information
from X2, X2 might have nothing to do with X1.

The foregoing formalism for continuous systems seems
to be surprisingly simple. We now carry over the idea to
discrete maps. Maps usually display more complex and
more interesting features than continuous flows. In fact, the
information transfers by previous researchers are all for-
mulated in the context of discrete systems. We need to
extend (10) and (11) to 2D maps, even for the purpose of
making contacts with the classical formalisms. For sim-
plicity, we first examine a map with invertible individual
components and then generalize to more generic cases.

Consider a transformation �: �! �, which is made
up of two components �1: � � �1, �2: � � �2. The
evolution of its density is steered by the Frobenius-Perron
operator (F-P operator hereafter) P : L1��� ! L1���,
where the sample space � is, again, a shorthand for �1 �
�2. Given a density � � ��x1; x2�, P is defined, in a loose
sense (see [4] for a rigorous treatment using the measure
theory) such thatZZ

!
P��x1; x2�dx1dx2 �

ZZ
��1�!�

��x1; x2�dx1dx2; (12)

where ! is any subset of �. For an invertible transforma-
tion �;P can be expressed explicitly as

P ��x1; x2� � �	��1�x1; x2�
jJ�1j; (13)

where J�1 � J�1�x1; x2� � det	@���1�x1; x2��=@�x1; x2�

is the determinant of the Jacobian matrix for the inverse
transformation of � [4].

Now compute the entropy increase after applying once
an invertible mapping �. From Eq. (13),
�H � �
ZZ

P� logP�dx1dx2 �
ZZ

� log�dx1dx2

� �
ZZ

����1�x1; x2��jJ
�1j log	��1�x1; x2�jJ

�1j
dx1dx2 �
ZZ

� log�dx1dx2

� �
ZZ

��u1; u2�jJ�1j	log��u1; u2� � logjJ�1j
jJjdu1; du2 �
ZZ

� log�dx1dx2

� �
ZZ

��x1; x2� logjJ�1jdx1dx2:
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In the derivation, we have made a transformation of vari-
ables from (x1; x2) to �u1; u2� � ��1�x1; x2� and use the
fact that ��1��� � �. The above equality can be con-
cisely rewritten as

�H � E logjJj: (14)

Notice that jJj is the rate of area change of the trans-
formation �. Equation (14), hence, simply states that the
change of entropy is the average of the logarithm of area
change of the phase space.

Equation (14) is consistent with its continuous coun-
terpart (5). If the transformation � is replaced by an
infinitesimal operator, the two are identical. An obvious
observation about (14) is, for an invertible measure-
preserving transformation (jJj � 1), entropy stays
invariant.

We proceed to investigate the entropy transfer. Consider
the transfer from X2 to X1 first. The entropy of X1 increases
as

�H1 � �
Z

�1

�Z
�2

P�dx2

�
log

�Z
�2

P�dx2

�
dx1

�
Z

�1

�1 log�1dx1;

where �1 is the marginal distribution of X1. This increase is
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due to two mechanisms: One is by X1 itself; another is the
transfer from X2. We denote these two by �H�1 and T2!1,
respectively. In the case when �1, the first component of
��x1; x2�, is invertible, (14) implies that �H�1 is due to the
expansion or contraction of the phase space in dimension
x1, while keeping dimension x2 unchanged. That is to say,

�H�1 � E logjJ1j; (15)

where J1 � @�1=@x1. Following the same argument with
the continuous system, the transfer of entropy from X2 to
X1, T2!1, is simply the difference between �H1 and �H�1 .
Likewise, the transfer from the opposite direction may also
be calculated.

The above formulation works for the case when both
�1 and �2 are invertible. Maps, however, are much more
complex than the discretized form of (1). In this con-
text, even though a 2D system is invertible, its individual
components may not be so. Well-studied examples in-
clude the baker transformation and the Hénon map. We
need to extend the foregoing formalism to allow for
noninvertibility.

The central point of the extension is with the starred
entropy increase. Taking direction 1 as an example, what is
needed is to generalize (15) so that noninvertibility is
permissible. We claim the generalized version should be
�H�1 �
Z
�1�x1� log�1�x1�dx1 �

ZZ
P 1�1��1�x1; x2�� logP 1�1��1�x1; x2����x2jx1�jJ1jdx1dx2; (16)

where P 1 is the F-P operator when x2 is fixed; i.e., x2 appears in P 1 as a parameter. Equation (16) is just a restatement of
our previous argument that �H�1 be the entropy increase in X1 from one time step to the next step with x2 frozen as a
parameter, given X1 at the present step. It is easy to prove that [7] (a) when �1 is invertible, (16) reduces to (15), namely,
E logjJ1j, and (b) when �1 is independent of x2, �H�1 � �H1. Property (a) means that (16) is indeed an extension of our
previous formalism, while (b) is just the asymmetry property as expected. For all that account, the entropy transfer from X2

to X1 is, in a unified form,

T2!1��
Z

�1

�Z
�2

P�dx2

�
log

�Z
�2

P�dx2

�
dx1�

ZZ
P 1�1��1�x1;x2��logP 1�1��1�x1;x2����x2jx1��jJ1jdx1dx2:

(17a)
Likewise, the transfer from X1 to X2 is

T1!2��
Z

�2

�Z
�1

P�dx1

�
log

�Z
�1

P�dx1

�
dx2�

ZZ
P 2�2��2�x1;x2��logP 2�2��2�x1;x2����x1jx2��jJ2jdx1dx2;

(17b)
where P 2 is the F-P operator corresponding to transfor-
mation �2 with x1 fixed as a parameter.

The information transfers given by (17a) and (17b) are
physically consistent with the previous formalisms. In
particular, it is consistent with Schreiber’s transfer entropy
[2]. The transfer entropy is a Kullback entropy-like quan-
tity, which measures the incorrectness when the probability
mass function of X1 at time step n conditioned on the
measurements at previous time steps is taken as the proba-
bility of X1 given the measurements of both X1 and X2 at
their previous time steps. The essence of this philosophy is
reflected in our formalism. In the case of a Markov chain of
order one, Schreiber’s formula for the transfer entropy
from X2 to X1 is, at time step n,

T2!1 �
X
P�xn�1

1 ; xn1 ; x
n
2� log

P�xn�1
1 jxn1 ; x

n
2�

P�xn�1
1 jxn1�

; (18)

which is equal to the difference between A �
�
P
P�xn�1

1 ; xn1� logP�xn�1
1 jxn1� and B �

�
P
P�xn�1

1 ; xn1 ; x
n
2� logP�xn�1

1 jxn1 ; x
n
2�. These two terms

correspond, respectively, to the entropy increases �H1
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and �H�1 in our formalism upon one transformation: The
transition probability reflects the dynamics; when we
freeze a direction of the phase space to extract information
transfer, it essentially produces the conditional probability
given the component for that direction. In this sense, our
formalism is physically consistent with the Schreiber for-
mula with a Markov chain of order one.

However, our formalism differs quantitatively from (18).
The major difference lies in that A and B are not strictly in
a form of entropy increase, while entropy increase forms
the building blocks for our formalism. This difference
might lead to different results with the same problem, as
is clear in the following Hénon map application.

A Hénon map sets a good example for the 2D informa-
tion transfer. Defined as � � ��1;�2�: R2 ! R2,

�x1; x2�� �1� x2 � ax2
1; bx1�;

with a > 0 and b > 0 two parameters; X2 depends solely
on X1. One therefore expects simple physics existing for
T1!2. (T2!1 is much more complex, and we will consider it
in Ref. [7].) Specifically, a pure transfer from X1 is ex-
pected to account for all the entropy change in X2, and,
hence, T1!2 should be equal to the change of entropy in
terms of the marginal distribution of X2. This is indeed the
case by (17), which results in

T1!2 � logb�H1: (19)

Equation (19) reconfirms the fact that the entropy trans-
ferred to X2 is all that X1 possesses, plus the part due to the
expansion/contraction of phase space (with a factor b).
Particularly, when b � 1, T1!2 � H1. This simple result
is just what one may expect from the transformation
�2�x1; x2� � bx1. Among the transfer measures we
know, (17) is the only one that results in a transfer as
consistent with the dynamics of Hénon map as (19) is.

The baker transformation is another example whose
information transfer is qualitatively clear in physics, as
mentioned in the beginning of this Letter. It is defined as
a mapping

��x1; x2� �

�
�2x1;

x2

2 � 0 � x1 �
1
2; 0 � x2 � 1;

�2x1 � 1; x2

2 �
1
2�

1
2 < x1 � 1; 0 � x2 � 1;

mimicking a kneading dough. By computing ��1 and P�
and using the formulas (17a) and (17b), it is straightfor-
ward to obtain [7]

T2!1 � 0; T1!2 > 0:

This is to say, X1 (stretching) always loses information to
X2 (folding), while no transfer is invoked in the other way.
This is just as expected with the common physical intuition
[4,5].
24410
We have investigated the information transfer between
components in a 2D system, both in the form of a continu-
ous flow and with a discrete mapping. The resulting en-
tropy transfer possesses a property of asymmetry, which
requires that the transfer to random variable X1 from
variable X2 goes to zero if X1 evolves independently of
X2, while in the same time the opposite does not need to be
so. This formalism has been compared to Schreiber’s trans-
fer entropy and applied to several physical problems.
Applications to continuous dynamical systems are deferred
to Ref. [7], as the minimal dimensionality required for
chaos is 3 [5]. Applications to discrete systems include
one with the Hénon map and one with the baker trans-
formation. For the former, it gives a simple and physically
clear transfer from the quadratic component to the linear
component; for the latter, we found that there is always
information flowing from the stretching coordinate to the
folding coordinate, while no transfer occurs in the opposite
direction. The whole idea can be extended to dynamical
systems with many dimensions. We will present that in the
follow-ups to this Letter.
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