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ABSTRACT

A quantitative evaluation of the contribution of individual units in producing the collective behavior of a complex network can allow us to
understand the potential damage to the structure integrity due to the failure of local nodes. Given a time series for each unit, a natural way
to do this is to find the information flowing from the unit of concern to the rest of the network. In this study, we show that this flow can be
rigorously derived in the setting of a continuous-time dynamical system. With a linear assumption, a maximum likelihood estimator can be
obtained, allowing us to estimate it in an easy way. As expected, this “cumulative information flow” does not equal the sum of the information
flows to other individual units, reflecting the collective phenomenon that a group is not the addition of individual members. For the purpose
of demonstration and validation, we have examined a network made of Stuart–Landau oscillators. Depending on the topology, the computed
information flow may differ. In some situations, the most crucial nodes for the network are not the hubs, i.e., nodes with high degrees; they
may have low degrees and, if depressed or attacked, will cause the failure of the entire network. This study can help diagnose neural network
problems, control epidemic diseases, trace city traffic bottlenecks, identify the potential cause of power grid failure (e.g., the 2003 great power
outage that darkened much of North America), build robust computer networks, and so forth.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055051

Complex networks, for example the brain, power grids, city traf-
fic, financial markets, the Internet, cellular regulatory networks,
etc., may cease to function due to the depression or deteriora-
tion of certain individual nodes. An example is the 2003 great
blackout that darkened much of North America. How to identify
the cause(s), i.e., the deteriorated/depressed unit(s), is thence of
great importance. Usually, this is studied by preferentially remov-
ing a unit and observing the change in behavior of the network.
This may be expensive, and even infeasible, for many networks
(biological networks, in particular), as breaking a unit means ter-
minating the experiment. This study found that, when time series
of measurements for some property of the nodes exist, the prob-
lem can be solved by quantitatively assessing, in an easy way, the
contribution of each node to the network in terms of cumulant
information flow. It is found that the macrostate of a network is
not just a simple addition of the individual states, unless all the
individual units are independent. It is also found that, in some
situations, the most crucial nodes for the network may not be

the hubs; suppression of these nodes will shut down the entire
network. This study provides an easy approach to measuring the
importance of individual units in a complex network, which can
help diagnose neural network problems, control epidemic dis-
eases, trace city traffic bottlenecks, identify the potential cause of
power grid failure, build robust computer networks, etc.

I. INTRODUCTION

Complex networks provide a framework for the study of many
social, biological, and engineering systems, such as the Internet, the
brain, power grids, financial trading markets, food webs, and gene
regulatory networks, to name a few. A network consists of nodes
or vertexes the individual units or organizations contain and links
or edges for the interactions among the nodes. For a node, the
number of links connected to other nodes is called its degree. By
degree distribution, we can have homogeneous and heterogeneous
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networks. The former class has binomial or Poisson degree distri-
butions, examples including random graphs1 and some small-world
networks,2 while the latter class is scale free, bearing probability dis-
tributions P of degree k following a power law P(k) ∼ k−γ , with
an exponent γ ∼ 2–3. Many social,3 biological,4 and technological
networks5 have the scale-free property; other topological proper-
ties include high clustering coefficient, community and hierarchical
structures, and, for directed networks, reciprocity, triad significance
profile, etc.6,7

A goal of complex network studies is to understand how indi-
viduals collaborate to produce the collective behavior. One question
to ask is whether the connectivity of a network is robust (see Ref. 8
for a formal definition) to local node failure, deterioration, or func-
tional depression. Of particular interest is whether initially a tiny
shock may cascade to disrupt the network on a large scale. This
is a field of extensive research. There are a huge number of stud-
ies in this regard, among which are Refs. 9–12, to name a few. How
to quantify the contribution of a unit to the network as a whole is
thence an important issue; it is related to many real world problems,
such as power grid failure (e.g., the 2003 massive blackout that dark-
ened much of the North American upper Midwest and Northeast13),
control of epidemic diseases, identification of bottlenecks in city
traffic, etc. Usually, this is studied by observing the connectivity
after preferential removal of a unit, which is found to have differ-
ent effects on the two types of networks. If the removal or attack
is random, heterogeneous networks are quite robust as compared
to homogeneous networks; if, however, the attack is intentional at
some special nodes, then heterogeneous networks could be rather
fragile. These special nodes are usually highly connected ones, i.e.,
hubs, as easily imagined. Recently, Tanaka et al.14 observed that
sparsely connected nodes may be more important, which, if func-
tionally depressed, may result in the drastic change in a network
structure. That is, the structure integrity or robustness could also
be largely influenced by low-degree nodes rather than by hubs. We
hence cannot judge the importance of a unit simply by degree. It
depends on many different properties of the network topology in
question.

As said above, the problem is usually tackled by removing a unit
and observing the change in topology of the network of concern.
However, in many networks, biological networks in particular, this
is often infeasible as breaking a unit means terminating the experi-
ment. On the other hand, we may have time series of measurements.
So the whole problem is converted into assessing the importance of
a unit from analyzing the signals as observed. Previously, we have
rigorously formulated information flow within dynamical systems
(e.g., Refs. 15 and 16); it has been widely used for studying the causal
relations among dynamical events (see Ref. 17, Sec. 2, and the ref-
erences therein) and hence is readily available for the study of the
interactions among nodes in a network. One may think that the
contribution of a given node may be obtained by adding up all the
information flows from it to the other nodes. Unfortunately, as we
will see in Secs. II A and IV, this is true only when all the nodes
are disconnected, i.e., when the nodes do not form a network and
hence no collective behaviors emerge. This from one aspect mani-
fests the well-known fact that groups are not simply the addition of
their individual members; they could be more or less (some social
science examples can be seen in Refs. 18–21).

In the following, we first present the setting for the problem,
and then derive the information flow from an individual unit to
the network. Maximum likelihood estimation is made in Sec. III; it
yields a formula for easy assessment of the importance of a node
from a given time series. As a validation, and also a demonstra-
tion of application, Sec. IV presents a network of synchronized
Stuart–Landau oscillators which, when a fraction of nodes become
deteriorated, may become silent completely. This study is concluded
in Sec. V.

II. INFORMATION FLOW FROM A UNIT TO THE ENTIRE

NETWORK

Consider a network modeled by an n-dimensional dynamical
system,

dx

dt
= F(x, t) + B(x, t)ẇ, (1)

where x is the state variable vector for the n nodes (x1, x2, . . . , xn),
x ∈ R

n, F = (F1, . . . , Fn), the differentiable functions of x and time
t that describe the interaction paths (edges/links), w is a vector of
m independent standard Wiener processes, and B = (bij) an n × m
is the matrix of stochastic perturbation amplitude. Here, we follow
the convention in physics not to distinguish a random variable and
a deterministic variable. (In probability theory, they are usually dis-
tinguished by uppercase and lowercase symbols.) To examine the
influence of a unit to the entire network made of the n units, it suf-
fices to consider the component x1; if not, we can always re-arrange
the vector x to make it so. The whole problem now boils down to
finding the information flow from x1 to (x2, x3, . . . , xn), which we
will be denoting as x2..n henceforth (i.e., as x with component 1
removed).

In Ref. 16, the information flow between two individual com-
ponents xi and xj has been rigorously derived from first principles.
However, the information flow from one component, here x1, to a
multitude of components, here x2..n, is yet to be implemented. One
may conjecture that it is just an addition of all flows from x1 to all the
individual components of x2..n. As we will see below, this is generally
not the case, and the nonadditivity is a reflection of the macrostate
or collective behavior of a multi-connected network.

We follow the strategy used in Ref. 22 to do the derivation. The
information flow is, by the physical argument therein, the amount
of entropy transferred from x1 to x2..n. We hence need to find the
evolution of the joint entropy of x2..n and single out the contribution
to this evolution from x1. This results in the following theorem.

Theorem 2.1 For the dynamical system (1), if the proba-
bility density function (PDF) of x is compactly supported, then the
information flow from x1 to (x2, x3, . . . , xn) is

T1→2..n = −E

[

n
∑

i=2

1

ρ2..n

∂Fiρ2..n

∂xi

]

+ 1

2
E





n
∑

i=2

n
∑

j=2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj



 .

(2)

The units are nats per unit time. In the equation, ρ2..n is the joint PDF
of (x2, x3, . . . , xn), gij =

∑m
k=1 bikbjk, and E signifies mathematical

expectation.
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Proof. Associated with (1), there is a Fokker–Planck equation
governing the evolution of the PDF ρ of x,

∂ρ

∂t
+ ∂ρF1

∂x1

+ ∂ρF2

∂x2

+ · · · + ∂ρFn

∂xn

= 1

2

d
∑

i=1

n
∑

j=1

∂2gijρ

∂xi∂xj

, (3)

where gij =
∑m

k=1 bikbjk, i, j = 1, . . . , n. This marginal PDF of x1,
ρ1(x1), is obtained by integrating out (x2, . . . , xn) in (3). By the
assumption of compactness of ρ, the resulting equation becomes

∂ρ1

∂t
+ ∂

∂x1

∫

Rn−1
ρF1 dx2..n = 1

2

∂2

∂x2
1

∫

Rn−1
g11ρ dx2..n. (4)

For the sake of notational simplicity, here we have written
dx2dx3 . . . dxn as dx2..n. From this, the evolution of the marginal
entropy of x1, written H1, can be derived as

dH1

dt
= −E

[

F1

∂ log ρ1

∂x1

]

− 1

2
E

[

g11

∂ log ρ1

∂x2

]

. (5)

See Ref. 22 for a proof.
To study the impact of x1 on the rest of the network, we need to

consider the evolution of the joint entropy of (x2, x3, . . . , xn) = x2..n,
i.e.,

H2..n = −
∫

Rn−1
ρ2..n log ρ2..n dx2..n,

where ρ2..n = ρ2..n(x2, . . . , xn) =
∫

R
ρ dx1 is the joint PDF of

(x2, x3, . . . , xn). By integrating out x1 from Eq. (3), we have

∂ρ2..n

∂t
+ ∂

∂x2

∫

R

ρF1 dx1 + · · · + ∂

∂xn

∫

R

ρFn dx1

= 1

2

n
∑

i=2

n
∑

j=2

∂2

∂xi∂xj

∫

R

gijρ dx1. (6)

Multiply −(1 + log ρ2..n), then integrate over R
n−1. The first term is

dH2..n/dt. By taking advantage of the compactness assumption, the
second term on the left-hand side results in

−
∫

Rn−1

[

(1 + log ρ2..n)
∂

∂x2

(∫

R

ρF2 dx1

)]

dx2..n

= −
∫

Rn−1
log ρ2..n

∂

∂x2

(∫

R

ρF2 dx1

)

dx2..n

=
∫

Rn−2

{[

− log ρ2..n ·
∫

R

ρF2 dx1

]∞

−∞

+
∫

R

(∫

R

ρF2 dx1

)

· ∂ log ρ2..n

∂x2

dx2

}

dx3 · · · dxn

=
∫

Rn
ρF2

∂ log ρ2..n

∂x2

dx = E

[

F2

∂ log ρ2..n

∂x2

]

,

where E signifies mathematical expectation. Likewise, the third term
through the nth term is

E

[

F3

∂ log ρ2..n

∂x3

]

, . . . , E

[

Fn

∂ log ρ2..n

∂xn

]

.

On the right-hand side, the (i, j)th component is

−
∫

Rn−1

[

(1 + log ρ2..n) · 1

2

∂2

∂xi∂xj

∫

R

gijρ dx1

]

dx2..n

= −1

2

∫

Rn−1
log ρ2..n · ∂2

∂xi∂xj

(∫

R

gijρ dx1

)

dx2..n

= −1

2

∫

Rn−2

{

[

log ρ2..n · ∂

∂xj

(∫

R

gijρ dx1

)]∞

−∞

−
∫

R

∂ log ρ2..n

∂xi

·
∂
∫

R
gijρ dx1

∂xj

dxi

}

dx2, . . . , dxi−1 dxi+1, . . . , dxn

= 1

2

∫

Rn−1

∂ log ρ2..n

∂xi

·
∂
∫

R
gijρ dx1

∂xj

dx2..n

= 1

2

∫

Rn−2

{[

∂ log ρ2..n

∂xi

∫

R

gijρ dx1

]∞

−∞

−
∫

R

(∫

R

gijρ dx1

)

· ∂2 log ρ2..n

∂xi∂xj

dxj

}

dx2, . . . , dxj−1 dxj+1, . . . , dxn

= −1

2

∫

Rn
ρgij

∂2 log ρ2..n

∂xi∂xj

dx = −1

2
E

[

gij

∂2 log ρ2..n

∂xi∂xj

]

.

Putting the above together, we have

dH2..n

dt
= −

n
∑

i=2

E

[

Fi

∂ log ρ2..n

∂xi

]

− 1

2

n
∑

i=2

n
∑

j=2

E

[

gij

∂2 log ρ2..n

∂xi∂xj

]

.

(7)

The evolution of H2..n contains two parts, one being the effect of
x1, another being the part with the effect of x1 excluded. We denote
the latter by dH2..n,\1/dt; it can be found by instantaneously freezing
x1 as a parameter. For this purpose, we examine, on an infinitesi-
mal interval [t, t + 1t], a system modified from the original (1) by
removing its first equation, i.e.,

dx2

dt
= F2(x1, x2, . . . , xn; t) +

m
∑

k=1

b2k(x1, x2, . . . , xn; t)ẇk, (8)

dx3

dt
= F3(x1, x2, . . . , xn; t) +

m
∑

k=1

b3k(x1, x2, . . . , xn; t)ẇk, (9)

...
...

dxn

dt
= Fn(x1, x2, . . . , xn; t) +

m
∑

k=1

bnk(x1, x2, . . . , xn; t)ẇk. (10)

Note here the Fis and biks still have dependence on x1, but now x1

appears in the modified system as a parameter. Given the PDF of x
at time t, we need to find the PDF of x\1 at time t + 1t. In Ref. 16, this
is fulfilled by first constructing a mapping 8 : R

n−1 → R
n−1, x\1(t)

7→ x\1(t + 1t), then studying the Frobenius–Perron operator of the
modified system. Here, we choose an alternative approach. Note that
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on the interval [t, t + 1t], there also exists a Fokker–Planck equation
for the modified system,

∂ρ\1

∂t
+ ∂F2ρ\1

∂x2

+ ∂F3ρ\1

∂x3

+ · · · + ∂Fnρ\1

∂xn

= 1

2

n
∑

i=2

n
∑

j=2

∂2gijρ\1

∂xi∂xj

, (11)

ρ \1 = ρ2..n at time t. (12)

Here, gij =
∑m

k=1 bikbjk is still as before; ρ\1 means the joint PDF of
(x2, . . . , xn) with x1 frozen as a parameter. ρ\1 is somehow similar to
the conditional PDF of the former on the latter but not exactly as
that. The subscript \1 signifies that x1 is removed from the indepen-
dent variables. Note this is quite different from ρ2..n, which has no
dependence on x1 at all, but they are equal at time t.

Divide (11) by ρ\1 to get

∂ log ρ\1

∂t
+

n
∑

i=2

1

ρ\1

∂Fiρ\1

∂xi

= 1

2ρ\1

n
∑

i=2

n
∑

j=2

∂2gijρ\1

∂xi∂xj

.

Discretizing and noticing that ρ(t) = ρ2..n(t), we have

log ρ(x\1; t + 1t) = log ρ2..n(x\1; t) − 1t ·
n
∑

2

1

ρ2..n

∂Fiρ2..n

∂xi

+ 1t

2

n
∑

2

n
∑

2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj

+ o(1t).

To arrive dH2..n,\1/dt, we need to find log ρ(x\1(t + 1t); t + 1t).
Using the Euler–Bernstein approximation,

x\1(t + 1t) = x\1(t) + F\11t + B\11w, (13)

where just like the notation x\1,

F\1 = (F2, . . . , Fn)
T,

B\1 =







b21 · · · b2m

...
. . .

...
bn1 · · · bnm






,

1w = (1w1, . . . , 1wm)T,

and 1wk ∼ N(0, 1t), we have

log(ρ\1(x\((t + 1t); t + 1t)

= log ρ2..n(x\1(t) + F\11t + B\11w; t)

− 1t ·
n
∑

2

1

ρ2..n

∂Fiρ2..n

∂xi

+ 1t

2

n
∑

2

n
∑

2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj

+ o(1t)

= log ρ2..n(x\1(t)) +
n
∑

i=2

[

∂ log ρ2..n

∂xi

(

Fi1t +
m
∑

k=1

bik1wk

)]

+ 1

2
·

n
∑

i=2

n
∑

j=2

[

∂2 log ρ2..n

∂xi∂xj

(

Fi1t +
m
∑

k=1

bik1wk

)

·
(

Fj1t +
m
∑

l=1

bjl1wl

)]

− 1t ·
n
∑

2

1

ρ2..n

∂Fiρ2..n

∂xi

+ 1t

2

n
∑

2

n
∑

2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj

+ o(1t).

Take mathematical expectation on both sides. The left-hand side
is −H2..n,\1(t + 1t). By the Corollary III.I of Ref. 16, and noting
E1wk = 0, E1w2

k = 1t, and the fact that 1w are independent of
x\1, we have

− H2..n,\1(t + 1t) = −H2..n(t) + 1t · E

n
∑

i=2

Fi

∂ log ρ2..n

∂xi

+ 1t

2
· E

n
∑

i=2

n
∑

j=2

m
∑

k=1

m
∑

l=1

bikbjlδkl

∂2 log ρ2..n

∂xi∂xj

− 1t · E

n
∑

2

1

ρ2..n

∂Fiρ2..n

∂xi

+ 1t

2
E

n
∑

2

n
∑

2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj

+ o(1t)

= −H2..n(t) + 1t · E

n
∑

i=2

Fi

∂ log ρ2..n

∂xi

+ 1t

2
· E

n
∑

i=2

n
∑

j=2

gij

∂2 log ρ2..n

∂xi∂xj

− 1t · E

n
∑

2

1

ρ2..n

∂Fiρ2..n

∂xi

+ 1t

2
E

n
∑

2

n
∑

2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj

+ o(1t).

So

dH2..n,\1

dt
= lim

1t→0

H2..n,\1 − H2..n(t)

1t

= −E

n
∑

i=2

(

Fi

∂ log ρ2..n

∂xi

− 1

ρ2..n

∂Fiρ2..n

∂xi

)

− 1

2
E

n
∑

i=2

n
∑

j=2

(

gij

∂2 log ρ2..n

∂xi∂xj

+ 1

ρ2..n

∂2gijρ2..n

∂xi∂xj

)

.

Hence, the information flow from x1 to x\1 is

T1→2..n = dH2..n

dt
− dH2..n,\1

dt

= −E

n
∑

i=2

(

Fi

∂ log ρ2..n

∂xi

)

− 1

2
E

n
∑

i=2

n
∑

j=2

(

gij

∂2 log ρ2..n

∂xi∂xj

)
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−E

n
∑

i=2

∂Fi

∂xi

+ 1

2
E

n
∑

i=2

n
∑

j=2

(

gij

∂2 log ρ2..n

∂xi∂xj

+ 1

ρ2..n

∂2gijρ2..n

∂xi∂xj

)

= −E

[

n
∑

i=2

1

ρ2..n

∂Fiρ2..n

∂xi

]

+ 1

2
E





n
∑

i=2

n
∑

j=2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj



 .

�

There is a nice property regarding noise: when the noise is addi-
tive, the stochastic contribution to the information flow vanishes, as
stated in the following corollary.

Corollary 2.1 In (1), if B does not depend on x, then

T1→2..n = −E

[

n
∑

i=2

1

ρ2..n

∂Fiρ2..n

∂xi

]

.

Proof. If bij is independent of x, so is gij =
∑m

k=1 bikbjk. Thus,

E
∑

i

∑

j

1

ρ2..n

∂2gijρ2..n

∂xi∂xj

=
∑

i

∑

j

gij

∫

Rn

∂2ρ2..n

∂xi∂xj

dx

=
∑

i

∑

j

gij

∫

Rn−1

∫

R
ρ dx1

ρ2..n

∂2ρ2..n

∂xi∂xj

× dx2 dx3 . . . dxn

=
∑

i

∑

j

gij

∫

Rn−1

∂2ρ2..n

∂xi∂xj

dx2 dx3, . . . , dxn,

which is zero by the compactness of ρ. �

Formula (2) can be verified with the particular situation in
which the rest of the network does not depend on x1. In this case,
x1 plays no role. Indeed, by following the procedure for the above
corollary, one can prove that T1→2..n vanishes. So we have

Theorem 2.2 (Principle of nil causality) If F\1 and B\1 are
independent of x1, T1→2..n = 0.

A. Linear systems

Steered by a linear system, a Gaussian process is always Gaus-
sian. In this case, the information flow can be greatly simplified.

Theorem 2.3 In (1), suppose

Fi = fi +
n
∑

j=1

aijxj, (14)

where fi and aij are constants, and bij are also constants. Further
suppose that initially x has a Gaussian distribution, then

T1→2..n =
n
∑

i=2





n
∑

j=2

σ ′
ij

(

n
∑

k=1

aikσkj

)

− aii



 . (15)

In the equation, σ ′
ij is the (i, j)th entry of

[

1 0
0 6−1

\1

]

, where 6 is the

covariance matrix, and 6\1 is 6 with the first row and first column
deleted.

Proof. In (2), by Corollary 2.1, the stochastic part (second
term) can be ignored. Suppose the joint PDF of x has a form like

ρ(x1, . . . , xn) = 1
√

(2π)n det 6
e− 1

2 (x−µ)T6−1(x−µ). (16)

Then, it is easy to show

ρ2..n(x2, . . . , xn) = 1
√

(2π)n−1 det 6\1

e
− 1

2 (x\1−µ\1)T6
−1
\1 (x\1−µ\1)

, (17)

where µ\1 is the vector µ with the first entry removed. For easy cor-
respondence, we will still count the entries as those as numbered in
6 and µ. So

Fi

∂ log ρ2..n

∂xi



fi +
n
∑

j=1

aijxj





∂

∂xi

[

−1

2
(x\1 − µ\1)

T
6−1

\1 (x\1 − µ\1)

]

=



fi +
n
∑

j=1

aijxj





˙∑n

j=2

(

−
σ ′

ij + σ ′
ji

2

)

· (xj − µj).

Here, σ ′
ij is the (i, j)th entry of the matrix 6−1

\1 . (Note here the entry

indices run from 2 through n, not from 1 through n!) As 6\1 is
symmetric, so is 6−1

\1 , and hence (σ ′
ij + σ ′

ji)/2 = σ ′
ij. So

−EFi

∂ log ρ2..n

∂xi

= 0 − E

n
∑

j=1

aijxj ·
n
∑

j=2

(−σ ′
ij) · (xj − µj)

= E

n
∑

k=1

aik(xk − µk) ·
n
∑

j=2

σ ′
ij(xj − µj)

=
n
∑

k=1

n
∑

j=2

aikσ
′
ijE(xk − µk)(xj − µj)

=
n
∑

k=1

n
∑

j=2

aikσ
′
ijσkj.

The other term

−E

n
∑

i=2

∂Fi

∂xi

= −
n
∑

i=2

aii.

Equation (15) follows by summing these two terms together. �

When n = 2, the above formula can be further simplified. In
fact,

T1→2 = a21σ
′
22 · σ12 + a22σ

′
22 · σ22 − a22.

In this case, σ ′
22 = 1/σ22, so

T1→2 = a21

σ12

σ22

,

a special case of the formula Ti→j = ajiσij/σjj as obtained before in
Ref. 16.
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From above one can see that, in general,

T1→2..n 6=
n
∑

j=2

T1→j. (18)

This must also hold for general nonlinear systems; anyhow, lin-
ear systems form a particular subset. That is, the macrostate of a
network is not just a simple addition of the individual states. The
equality can hold only when the n components are uncorrelated, i.e.,
when 6 is a diagonal matrix, and hence σ ′

ii = 1/σii and σ ′
ij = 0 for

i 6= j. Indeed, in this case, the n components are just independent
units; they do not form a network.

B. The impact of x\1 on x1

We know that information flow or causality is asymmetric
between two entities, that is, the contribution of x1 to the rest of the
network is generally different from that the other way around. For
late reference, we here briefly present the result of the information
flow from x\1 to x1, though it is not needed in this study.

From Ref. 22,

dH1

dt
= −E

[

F1

∂ log ρ1

∂x1

]

− 1

2
E

[

g11

∂2 log ρ1

∂x2
1

]

. (19)

Now if we modify the system on the infinitesimal interval [t + 1t]
by freezing (x2, x3, . . . , xn), and follow the above derivation, we
finally arrive at the time rate of change of the marginal entropy of
x1 with the effect of (x2, x3, . . . , xn) excluded is

dH1,\2..n

dt
= E

(

∂F1

∂x1

)

− 1

2
E

(

g11

∂2 log ρ1

∂x2
1

)

− 1

2
E

(

1

ρ1

∂2g11ρ1

∂x2
1

)

.

(20)
So the information flow from x\1 to x1 is

T2..n→1 = dH1

dt
− dH1,\2..n

dt

= −E

[

F1

∂ log ρ1

∂x1

+ ∂F1

∂x1

]

+ 1

2
E

[

1

ρ1

∂2g11ρ1

∂x2
1

]

= −E

[

1

ρ1

∂F1ρ1

∂x1

]

+ 1

2
E

[

1

ρ1

∂2g11ρ1

∂x2
1

]

. (21)

A seemingly surprising observation is that this is precisely the same
in form as that for 2D systems (see Ref. 22), although here the
dimensionality can be larger than 2. This does make sense, as we are
splitting the system into two subsystems, one with x1, another with
a collection of n − 1 units. In the meantime, this generally differs in
form from those individual information flow formulas for systems
with n > 2 (see Ref. 16).

III. MAXIMUM LIKELIHOOD ESTIMATION

Given a system like (1), we can rigorously evaluate the infor-
mation flows among the components. Now suppose, instead of the
system, what we have are just n time series with K steps, K � n,
{x1(k)}, {x2(k)}, . . . , {xn(k)}. We can estimate the system from the
series and then apply the information flow formula to fulfill the task.

Assume a linear model as shown above, and assume m = 1. Follow-
ing Ref. 15, the maximum likelihood estimator of aij is equal to the
least-square solution of the following over-determined problem:















1 x1(1) x2(1) · · · xn(1)
1 x1(2) x2(2) · · · xn(2)
1 x1(3) x2(3) · · · xn(3)
...

...
...
. . .

...
1 x1(K) x2(K) · · · xn(K)





























fi
ai1

ai2

...
ain















=















ẋi(1)
ẋi(2)
ẋi(3)

...
ẋi(K)















,

where ẋi(k) = (xi(k + 1) − xi(k))/1t (1t is the time stepsize), for
i = 1, 2, . . . , n, k = 1, . . . , K. Use overbar to denote the time mean
over the K steps. The above equation is















1 x̄1 x̄2 · · · x̄n

0 x1(2) − x̄1 x2(2) − x̄2 · · · xn(2) − x̄n

0 x1(3) − x̄1 x2(3) − x̄2 · · · xn(3) − x̄n

...
...

...
. . .

...
0 x1(K) − x̄1 x2(K) − x̄2 · · · xn(K) − x̄n





























fi
ai1

ai2

...
ain















=















¯̇xi

ẋi(2) − ¯̇xi

ẋi(3) − ¯̇xi

...

ẋi(K) − ¯̇xi















.

Denote by R the matrix







x1(2) − x̄1 x2(2) − x̄2 · · · xn(2) − x̄n

...
...

...
. . .

...
x1(K) − x̄1 x2(K) − x̄2 · · · xn(K) − x̄n






,

s is the vector (xi(2) − ¯̇xi, . . . , xi(K) − ¯̇xi)
T
, and ai is the row vec-

tor (ai1, . . . , ain)
T. Then, Rai = s. The least-square solution of ai, âi,

solves

RTRâi = RTs.

Note RTR is KC, where C is the covariance matrix. So











âi1

âi2

...
âin











= C−1











c1,di

c2,di

...
cn,di











, (22)

where cj,di is the covariance between the series {xj(k)} and {(xi(k
+ 1) − xi(k))/1t}.

So finally, the maximum likelihood estimator (mle) of T1→2..n is

T̂1→2..n =
n
∑

i=2





n
∑

j=2

c′
ij

(

n
∑

k=1

âikckj

)

− âii



 , (23)
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where c′
ij is the (i, j)th entry of C̃

−1
, and

C̃ =















1 0 0 · · · 0
0 c22 c23 · · · c2n

0 c23 c33 · · · c3n

...
...

...
. . .

...
0 c2n c3n · · · cnn















. (24)

Denoting by Â the matrix with entries (âij), Eq. (23) can be more
succinctly written as

T̂1→2..n = Tr\1

[

C̃
−1

(ÂC)
T
]

− Tr\1

[

Â
]

. (25)

Here, Tr\1 means the trace of a matrix with the first term removed.
That is, it is defined such that, for matrix Q,

Tr\1Q = TrQ − Q(1, 1).

Note that this is made possible by the form of C̃ (with its special form
in 1st row and 1st column); otherwise, the trace of the product of two
matrices, say, Pn×nQn×n ≡ Rn×n, is generally not equal to Tr[P(2 :
n, 2 : n)Q(2 : n, 2 : n)] + R(1, 1).

IV. APPLICATION TO A NETWORK OF COUPLED

STUART–LANDAU OSCILLATORS

In this section, we put (23) to application to a network with
N nodes, each made of a Stuart–Landau oscillator.24 This has been
used to model many biological networks for phenomena such as cir-
cadian rhythms, synchronized neuronal firing, and spatiotemporal
activity in the heart and the brain (see Ref. 14 for more examples).
Other similar synchronized networks include those made of Rössler
oscillators, e.g., Ref. 23. For the purpose of demonstration, here a
small number N = 6 is chosen. Let the complex state variable of the
jth oscillator be zj. It is defined as (see, e.g., Refs. 14 and 25)

dzj

dt
=
(

αj + i�j − |zj|2
)

zj +
K

N

N
∑

k=1

3jk(zk − zj) + νẇj,

j = 1, . . . , N, (26)

where i =
√

−1, �j are the frequencies, αj are the control parame-
ters, and (3) is the adjacency matrix. Here, the coupling coefficient
K is chosen to be 1. The notation generally follows that in Ref. 14;
the difference lies in an � varying oscillator by oscillator, and an
additional stochastic term νẇj, where wj is a standard Wiener pro-
cess and ν is the stochastic perturbation amplitude. We add some
weak stochasticity for convenience (see below). If K = 0 and ν = 0,
the oscillators are Stuart–Landau oscillators; a positive αj yields an
oscillating state, whereas a negative αj disables the oscillator. In
this study, K = 1, �j = j/2, j = 1, . . . , N, are fixed throughout. (We
choose these �j simply to make them different. One may feel free
to choose other values.) αj may be 1 or −3, depending on whether
zj is activated or switched off. The adjacency matrix is chosen such
that 32k = 3k2 = 0, k = 1, 3, 4; 31k = 3k1 = 0, k = 4, 6, and for all
other (j, k), 3jk = 1. The resulting network is sketched in Fig. 1. As
can be seen, z5 is a highly connected node, or hub, as defined in
Sec. I; second to it is z6. z1 and z2 are two sparsely connected nodes.

1

32

4

5

6

FIG. 1. A schematic of the network of coupled oscillators. For the sake of clarity,
in this study, only the six-node (red) subnetwork is considered.

Equation (26) is discretized and solved using the second order
Runge–Kutta scheme. The system is initialized with random values,
integrated forward with a time stepsize of 1t = 0.1. Without cou-
pling, the individual oscillators operate on their own, each exhibiting
a periodic series with a distinct frequency. Shown in Fig. 2(a) are
the active (solid) and inactive (dashed) modes for z1 when ν = 0.
Figure 2(b) displays the corresponding cases when ν = 0.1. We need
this slightly perturbed system because, as seen in Fig. 2(a), the trajec-
tories are too regular (periodic), only leaving on the Poincaré plane
one point. In other words, they contain no information, making the
information flow problem singular. Recently, it is found that this is
actually an extreme case,27 and hence can be handled by perturbing
the system slightly with weak stochasticity. (In real systems, noises
are ubiquitous.) Figure 2(b) approximates well its deterministic case
[Fig. 2(a)] except for some weak ripples superimposed on the curves.
So it is reasonable to believe that the addition of the weak perturba-
tion can be used to compute the information flow for the original
system.

Figure 3 shows the time series of the six coupled oscillators. In
(a), all of them are on. As seen, though the frequencies �j differ, the
six oscillators work together to produce completely synchronized
oscillations (see Ref. 26 for optimum synchronizations). To assess
the importance of a node, a usual practice is to disable it and observe
the response. In Figs. 3(b)–3(g), the respective responses when z1–z6

are disabled, respectively, are shown. With only one node failure,
the network is still alive. But one can see that the impact of z5 is sig-
nificantly larger than others, while that from z1 is by far the least.
In Fig. 3(h), when z5 and z2 are disabled, then the entire network
gradually dies, though in this case α1, α3, α4, and α6 are still positive.

As mentioned in the Introduction, the above assessment by
preferential removal of designated node(s) may not be feasible for
many networks in nature, neuronal networks in particular. Now use
formula (23) to estimate the information flow from the individual
oscillators to the network. To begin, note that each zj actually has
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FIG. 2. Time series of a single oscillator z1 without coupling (K = 0). (a) No noise; (b) weak stochasticity applied (ν = 0.1). Only the real parts are drawn.

FIG. 3. Time series of the six coupled oscillators zj (only the real parts of zj are drawn). (a) All oscillators are active; (b) z1 inactive (all others are active; same below);
(c) z2 inactive; (d) z3 inactive; (e) z4 inactive; (f) z5 inactive; (g) z6 inactive; (h) both z2 and z5 are inactive.
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two components; so they should be taken as two time series. That
is, the dynamical system has a dimensionality of 2 × N. The remain-
ing computation is straightforward. We generate series with 5000
steps, with the first 100 steps discarded (to ensure stationarity). The
computed results are (units in nats per unit time; values may differ
slightly due to the random initialization)

T̂1→network T̂2→network T̂3→network T̂4→network T̂5→network T̂6→network

0.65 1.00 2.31 2.30 2.96 2.93

By comparison, z5 and z6 are most important; second to them
are z3 and z4. z1 and z2 are the least important. The result is just
as that as illustrated in Fig. 3. From our common intuition, this
makes sense too. As we can check from Fig. 1, z5 and z6 are the hubs,
whereas z1 and z2 are sparsely connected.

As an aside, we have computed the summed pairwise informa-
tion flows

∑

j T1→j,
∑

j T2→j,. . . ,
∑

j T6→j, where the summation for

a node is over all the indices except that of the node itself. The results
are, respectively,

1.62, 1.51, 3.35, 2.21, 2.97, 2.18.

They are quite different from the computed T1→network,. . . , T6→network

as shown above. Particularly, the result does not correctly assign the
largest value to the hub, i.e., node 5. This from one aspect testifies to
the validity of (18), i.e., that the macrostate of a network is not just a
simple addition of the individual states.

The above network does not have local weights and the links
are not directed. If there exist directed links and/or localized weights
(e.g., Ref. 26) in the network, hubs need not always be the most
crucial units. To see this, let 352 = 10 and 362 = 5. The computed
result is tabulated as follows:

T̂1→network T̂2→network T̂3→network T̂4→network T̂5→network T̂6→network

0.35 4.11 2.06 1.95 2.48 0.74

So now the most important node is z2, though it is sparsely
connected! Also, the impact from z6 has been greatly reduced.

Also, as an aside, we have computed for this case
∑

j T1→j,
∑

j T2→j,. . . ,
∑

j T6→j, which by computation are, respectively,

0.99, 6.52, 1.74, 1.09, 0.85, 2.20.

Again, they are quite different from the computed total information
flows as tabulated above.

To see whether the total information flow correctly measures
the importance of a node, we do the node deterioration experiments
again. Indeed, if z2 is deteriorated or suppressed, the whole network
becomes silent, as shown in Fig. 4(c). The result is hence validated.

V. SUMMARY

A quantitative evaluation of the contribution of individual
units in producing the collective behavior of a complex network is

important in that it allows us to gain an understanding of which
units determine the vulnerability of the network. In this study, we
show that a natural measure is the information flow from the unit
in concern to the entire network. A formula is derived, and its max-
imum likelihood estimator is provided. The results are summarized
henceforth for easy reference.

For a network modeled with an n-dimensional continuous-
time dynamical system,

dx

dt
= F(x, t) + B(x, t)ẇ,

the information flow from node x1 to the network x2, x3, . . . , xn is

T1→2..n = −E

[

n
∑

i=2

1

ρ2..n

∂Fiρ2..n

∂xi

]

+ 1

2
E





n
∑

i=2

n
∑

j=2

1

ρ2..n

∂2gijρ2..n

∂xi∂xj



 .

When only time series are available, under the assumption of linear-
ity, the maximum likelihood estimator of T1→2..n is

T̂1→2..n = Tr\1

[

C̃
−1

(ÂC)
T
]

− Tr\1

[

Â
]

.

In the equation, Tr\1 means the trace of a matrix with the first term

removed, C = (cij) is the covariance matrix, C̃ is equal to C except

c̃1,1 = 1, c̃j,1 = c̃1,j = 0, j = 2, 3, . . . , n. Â = (âij) has entries











âi1

âi2

...
âin











= C−1











c1,di

c2,di

...
cn,di











, i = 1, 2, . . . , n,

where cj,di is the covariance between the series {xj(k)} and {(xi(k
+ 1) − xi(k))/1t}. Observe that this “cumulative information flow”
is not equal to the sum of the information flows to other individual
units, reflecting the collective phenomenon that a group is not the
addition of the individual members.

The above formula has been put to application to a network
consisting of Stuart–Landau oscillators. It is shown that the node
with largest information flow is indeed most crucial for the net-
work. Its deterioration or suppression will cause the whole network
to cease to function. An observation is depending on the topology,
such a node may not be a hub, i.e., the node with high degree; on
the contrary, it could be some sparsely connected, low-degree node.
This study is expected to be useful in identifying clues to the mys-
tery why initially small shocks at some nodes may trigger a massive,
global shutdown of the entire network.

Apart from that considered in the coupled oscillator network
example, other node interventions exist. In many biological and
technological networks, node failure, attack or deletion, refers to that
the node in question is isolated from the network, i.e., the edges to
and from it are deleted. In this case, the effect may not appear as
a suppression of the oscillation; the oscillation may be still there,
but the collective pattern is changed to a pattern without synchro-
nization, a pattern with much higher frequency, etc. The change in
pattern is not easy to quantify simply by visual inspection. That is
the reason why we chose the above example for validation; anyhow,
“dead” and “alive” are two states that make the easiest situation for
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FIG. 4. As in Fig. 3, but with weighted and directed links.

a naked eye to distinguish. Nonetheless, the information flow for-
malism in this study is generic and hence equally holds for these
different situations. This has been testified in many real world appli-
cations in previous studies. For information flow and causality and
their applications to the diverse real world problems such as global
climate change, neuroscience, financial economics, and El Niño,
among others, see a brief review in Ref. 17, Sec. 2.

It should be made clear that, if intervention of a node shuts
down the network, the information flow from that node must be
large. Particularly, if it is the only node that has such an impact,
then it must have the largest information flow. However, conversely,
intervention of the node with the largest information flow does not
guarantee the suppression of the network. In that case, the informa-
tion flow may not be large enough relative to those from other nodes
within the same network. Nonetheless, how large the information
flow should be for a node to have such a global impact? This is a

rather basic question. It refers to how information flow change by
the intervention can be linked to the changes in the network dynam-
ics. This issue, among many others, are to be investigated in future
studies.
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