
MULTISCALE PROCESS, MULTISCALE

DECOMPOSITION, AND MULTISCALE

DYNAMICS∗

X. SAN LIANG
†

∗NCOADS Lecture Series No. 9 (May 20, 2019)
†Center for Ocean-Atmosphere Dynamical Studies, Nanjing 210044,

China (x.san.liang@gmail.com).
1



2 NCOADS Lecture Series #9 Copyright c© 2019 by X. San Liang

CONTENTS

Part I Multiscale analysis and multiscale energy
1 Multiscale phenomena 4
2 Concept of multiscale decomposition 4
2.1 Fourier series expansion
2.2 Inner product space
2.3 Decomposition by subspace
3 Multiscale energy 7
3.1 Multiscale energy is a concept in phase space — A common practice with filters is

conceptually wrong
3.2 Parseval’s equality and orthonormality — Foundation of multiscale energy analysis
3.3 Eddy energy with Reynolds decomposition —It is wrong if no averaging is taken
3.4 Multiscale energy with respect to filtering—Orthogonality is pivotal
4 Time-frequency/space-wavenumber decomposition 10
4.1 The difficulty with the traditional multiscale analysis techniques
4.2 Multiscale energy with orthonormal wavelets—Wavelet spectra are NOT “biased” at

all
4.3 Scale window and multiscale window transform (MWT)
4.4 Multiscale energy with MWT

Part II Multiscale energetics—eddy generation,
mean-eddy interaction, and turbulence production

5 Issues with the classical empirical formalisms 18
5.1 Traditional cross-scale energy transfer with Reynolds decomposition
5.2 Barotropic and baroclinic instabilities
6 Multiscale transport and canonical transfer 20
6.1 Reconstruction of multiscale flux with MWT from “atom-like” entities
6.2 Canonical transfer
6.3 Canonical transfer with Reynolds decomposition
6.4 Validation with Kuo’s barotropic instability model
7 Multiscale energetics and localized Lorenz cycles 26
7.1 Multiscale oceanic energetics
7.2 Multiscale atmospheric energetics
7.3 Localized Lorenz cycles

Part III Exemplary applications
8 Eddy shedding into the South China Sea through Luzon Strait 30
9 Kuroshio dynamics in East China Sea
10 Kuroshio Extension variability
11 Sudden stratospheric warming in the 2012/2013 winter
12 Atmospheric blocking over the Atlantic Ocean
13 On the inverse relationship between the jet stream strength and storm intensity in

the Pacific storm track



NCOADS Lecture Series #9 Copyright c© 2019 by X. San Liang 3
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PART I. MULTISCALE ANALYSIS AND MULTI-
SCALE ENERGY

1. Multiscale phenomena. Multiscale processes are ubiquitous in oceans and
atmospheres. Related are many important yet notoriously difficult problems such
as hydrodynamic instability, turbulence production, relaminarization, global climate
change, storm growth, eddy shedding, to name but a few (Fig. 1.1). An in-depth
understanding of multiscale processes is therefore crucial to the progress of geophysical
fluid dynamics.

Fig. 1.1. Examples of multiscale phenomena in fluid flows: (a) turbulence; (b) atmospheric
cyclogenesis and ocean eddy shedding; (c) climate variability.

We know energy is one of the most fundamental notions in physics. Central to
the above problems is hence the transfer of energy between the processes as identified
on different scales; see Fig. 1.3 for a schematic. In order to study the cross-scale
energy transfer, we must first know how multiscale energy is represented, and then
investigate what governs the evolution of the represented energy. These two form the
themes of this lecture.

2. Concept of multiscale decomposition.
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Fig. 1.2. A superposition of three sub-processes on distinctly different scales results in a process
at a point within the turbulence wake as shown in Fig. 1.1.

Γ
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Fig. 1.3. A schematic of the mean-eddy interaction, which is characterized by the energy
transfer Γ between the mean and eddy processes.

2.1. Fourier series expansion. We know from elementary calculus that, a
function1 u(t),t ∈ [0, 1], it can be expanded using the trigonometric series:

u(t) =
a0

2
+

∞∑

n=1

[an cos(2nπt) + bn sin(2nπt)], (2.1)

where

a0 = 2

∫ 1

0

u(t)dt

an = 2

∫ 1

0

u(t) cos(2nπt)dt, n = 1, 2, ...

bn = 2

∫ 1

0

u(t) sin(2nπt)dt, n = 1, 2, ...

Without loss of generality, here the function under consideration is assumed to be on
[0, 1]; if not, we may always make it so by a coordinate transformation.

This expansion with trigonometric series, or Fourier series expansion, actually
makes a multiscale decomposition most familiar to us. In doing so, u(t) here is
decomposed as a sum of infinite many terms, each with a distinct scale–here period
Tn = 1/n, or angular frequency ωn = 2nπ, for n = 0, 1, 2, ... Note t may be replaced by
spatial coordinate; correspondingly the scale is changed to spatial scale (wavelength).

2.2. Inner product space. We need to touch a little bit about Hilbert space
or complete inner product space; we particularly need to consider the space L2[0, 1],
which, loosely speaking, is a collection of square integrable functions on [0, 1]. It is
equipped with an inner product 〈·, ·〉 defined as, for any u, v ∈ L2[0, 1],

〈u, v〉 =

∫ 1

0

K(t)u(t)v(t)dt, (2.2)

1For broad readership, here we avoid stating the conditions that u must satisfy, at a sacrifice of
mathematical rigor.
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with K(t) being some given positive function of t or constant. The inner product
allows a Hilbert space to have a geometric structure: 〈u, v〉 = 0 ⇔ u ⊥ v. Besides,
〈u, u〉 = ‖u‖2, i.e., the square of the norm ‖u‖. We will soon see, this is actually the
energy.

For a sequence {en} ⊂ L2[0, 1], if any function u ∈ L2[0, 1] can be expanded as a
linear combination of {en}, then the sequence is called a basis of L2[0, 1]. Moreover,
if {en} is orthonormal, i.e.,

{
〈ei, ej〉 = 0, i 6= j,
〈ei, ej〉 = ‖ei‖2 = 1. i = j,

then from

u(t) =
∑

i

αiei(t), (2.3)

one has

αi = 〈u, ei〉. (2.4)

Eq. (2.4) is called a transform of u with basis {ei}, and αi the transform coefficients
or Fourier coefficients. The expansion (2.3) is also called a reconstruction of u; partic-
ularly, any partial sum of the right hand side makes a partial reconstruction or, if no
confusion arises, simply reconstruction, of u. Notice that reconstruction is a concept
in physical space; here it is therefore a function of t. In contrast, transform coefficient
is a concept in phase space; it is NOT a function of t.

To see this more clearly, the trigonometric expansion Eq. (2.1) can be re-written
as

u(t) = ã0 +

∞∑

n=1

[ãn(
√

2 cosωnt) + b̃n(
√

2 sinωnt)] (2.5)

where

ã0 =

∫ 1

0

u(t) · 1dt, (2.6)

ãn =

∫ 1

0

u(t) · (
√

2 cosωnt)dt, (2.7)

b̃n =

∫ 1

0

u(t) · (
√

2 sinωnt)dt. (2.8)

That is to say, u(t) is actually expanded with the basis

{1, ea,n, eb,n} = {1,
√

2 cos 2nπt,
√

2 sin 2nπt},

which can be combined into

{en}n=0,1,2,... = {1,
√

2 cos 2πt,
√

2 sin 2πt,
√

2 cos 4πt,
√

2 sin 4πt, ...}.

(In fact, this is simply {ei2nπt}; we write so to avoid introducing complex functions
which may complicate the introduction.) It is easy to prove that it is orthonormal
with respect to the inner product defined in (2.2) with K = 1, and the coefficients
ãn = 〈u, e2n〉, b̃n = 〈u, e2n+1〉, for n = 0, 1, 2, ...

If {en(t)} is ordered by scale, just as that in the trigonometric series, the decom-
position is a multiscale decomposition.
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2.3. Decomposition by subspace. In real applications, more often than not
we do not need to differentiate each scale; rather, it suffices to separate a process into
sub-processes on exclusive ranges of scales. In formal language, we may decompose
a space V ∈ L2[0, 1] into a direct sum of several orthogonal subspaces, each on an
exclusive range of scales. Such a subspace is termed by Liang and Anderson (2007) a
scale window. That it to say, if we decompose V = V0 ⊕ V1 ⊕ V2, with V0, V1, and V2

representing, respectively, large-scale, meso-scale, and sub-mesoscale windows, then
any function u ∈ V can be decomposed as

u(t) = u∼0(t) + u∼1(t) + u∼2(t) (2.9)

with u∼̟ ∈ V̟, and ̟ = 0, 1, 2. Here we use ∼̟ in the superscripts to indicate
that they are (partial) reconstructions on scale window ̟, rather than on a particular
scale. Eq. (2.9) is called a multiscale window decomposition.

For a function with a reconstruction as Eq. (2.3), one may combine certain terms
to make a partial reconstruction on the scale window corresponding to those terms.
But generally we may not have a reconstruction like (2.3). For example, application
of some filter to u may result in a decomposition with a larger scale part and a smaller
scale part:

u(t) = uL(t) + uH(t),

but we have no idea how each part is reconstructed as (2.3) does. In fact, (2.9) is sim-
ilar to a decomposition through filtering, with u∼0, u∼1, u∼2 similar to, respectively,
the low-pass, band-pass, and high-pass parts. But they are also very different in that
each u∼̟ corresponds to a transform coefficient which allows for energy representa-
tion, while traditional filters do not have this feature; we will see this soon in the
following sections. Similarly, the Reynolds decomposition

u(t) = ū+ u′(t)

is just a very special multiscale window decomposition.

3. Multiscale energy.

3.1. Multiscale energy is a concept in phase space — A common prac-
tice with filters is conceptually wrong. Multiscale energy is recalled every time
when a power spectrum is examined (cf. Fig. 3.1c). In this sense, it should be most
familiar to us. But, unfortunately, even about the notion of multiscale energy there
exists misconception.

Suppose now we have a series

u(t) = a0 cosω0t+ b0 sinω0t+ a1 cosω1t+ b1 sinω1t (3.1)

with ω0 ≪ ω1. We know, in the power spectrum, at these two scales 2π/ω0 and 2π/ω1

the energies are, respectively,

E0 = a2
0 + b20 (3.2)

E1 = a2
1 + b21 (3.3)

(3.4)

(up to some constant factor such as 1
2 ). So multiscale energy is a concept in phase

space; it is function of the Fourier coefficients an and bn which here are constants.
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Fig. 3.1. Time series and spectrum of the Kuroshio large meander: the time series of (a) the
jet position between 130oE and 139oE, and (b) that between 140oE and 142oE; (c) the power spectra
(averaged over the large meander region (30-34oN, 135-150oE) estimated from the altimetry data
(red) and HYCOM (blue) (from Yang and Liang 2019).

In the above example, the process has two distinctly different two scales. When
a filter is used for multiscale decomposition, u can be separated into a low-pass part
and a high-pass part:

u(t) = uL(t) + uH(t),

uL(t) = a0 cosω0t+ b0 sinω0t,

uH(t) = a1 cosω1t+ b1 sinω1t.

During the past 2-3 decades, it has been a common practice in this community, a can
be found in vast publications in the literature, to simply take [uL(t)]2 and [uH(t)]2 as
the large-scale energy and small-scale energy!

As easily seen, the common practice does not make sense at all. [uL(t)]2 and
[uH(t)]2 are by no means equal to E0 and E1 in (3.2) and (3.3), respectively. Most of
all, E0 and E1 are phase space variables (independent of t here), while [uL(t)]2 and
[uH(t)]2 are in physical space (functions of t). So this common practice, which has
been widely adopted due to its simplicity, is conceptually wrong.

3.2. Parseval’s equality and orthonormality — Foundation of multi-
scale energy analysis. Theorem 3.1.

Suppose V is a space in L2[0, 1], and {en} is an orthonormal basis of it. Let u, v be

two functions in V . Then

〈u, v〉 =
∑

n

αnβn, (3.5)

where αn = 〈u, en〉, βn = 〈v, en〉 are the Fourier coefficients. If u = v, the above
becomes

∑

n

α2
n = 〈u, u〉 = ‖u‖2. (3.6)
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Eqs. (3.5) and (3.6) are called Parseval’s equality (or Parseval’s relation, Parseval’s
identity). Sometimes Eq. (3.5) is also called the generalized Parseval equality. When
the kernel K = 1, the right hand side of (3.6) is simply

‖u‖2 =

∫ 1

0

u2(t)dt = u2(t), (3.7)

i.e., the energy (up to some constant factor). So Parseval’s equality states that
the total energy in physical space is equal to the sum of the energies on all
scales. This lays the foundation for multiscale energetics analysis and, in particular,
for power spectral analysis.

So the square of the Fourier or transform coefficient, α2
n, is the energy on the

scale indexed by n. Moreover, for orthonormal basis {en},
α2

n = α2
n〈en, en〉 = 〈αnen, αnen〉 = ‖αnen‖2. (3.8)

Since αnen(t) is the reconstruction of u on the scale indexed by n, this is to say,
multiscale energy is actually the norm squared of the multiscale recon-
struction.

From above we know the importance of orthonormality of the basis. If not, the
Parseval equality would not hold, and hence the so-obtained ”multiscale energy” does
not make sense in physics (energy would not be conserved).2 The trigonometric basis
(sine and cosine) is orthonormal and hence the Fourier power spectral analysis makes
sense (in this case α2

n is ã2
n+ b̃2n), so does the widely used empirical orthogonal function

(EOF) analysis.
The requirement of orthonormality allows us to interpret the Parseval equality

(3.6) from a geometric aspect. Note αn = 〈u, en〉 is the projection of u onto the
coordinate en. So |〈u, en〉|2 is the square of the side in that direction. So the Parseval
equality actually states that the square of the hypotenuse, i.e., ‖u‖2, is equal to the
sum of squares of the other sides. As is well known, this is the Gougu Theorem
(Pythagorean theorem)!

3.3. Eddy energy with Reynolds decomposition—It is wrong if no av-
eraging is taken. For a Reynolds decomposition u = ū + u′, in fluid dynamics we
know that the corresponding mean energy and perturbation or eddy energy are

Emean = ū2, (3.9a)

Eeddy = u′2, (3.9b)

respectively. Notice that there is a mean in the eddy energy expression. With the
mean there is no way to distinguish the eddy process at one location from that at
another location on [0, 1]. In order to retain the local information, in the past decades
there have appeared in the literature a lot of studies which simply remove the mean
from the eddy energy expression. This is, again, conceptually wrong. (In fact, how
to retain the local information is a much profound problem. It is by no means this
trivial; see next section.)

To see why, first notice that (3.9) is consistent with the multiscale energy w.r.t.
trigonometric basis. For

u(t) = α0 +

∞∑

n=1

αnen(t),

2For example, “spectral analyses” with non-orthonormal wavelet bases are problematic, which,
however, have been widely used.
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where we have symbolically written cosωnt and sinωnt into one {en}. Reynolds
decomposition (originally in sample space; in practice usually performed in time):

u(t) = ū+ u′(t)

means

ū =

∫ 1

0

u(t)dt = α0 = const, (3.10)

u′(t) =

∞∑

n=1

[αnen(t)]. (3.11)

Obviously, ū2 = α2
0, i.e., mean energy or energy on scale ω0 = 0. By Parseval’s

equality,

+∞∑

n=1

α2
n =

∫ 1

0

u′2(t)dt = u′2(t). (3.12)

The left hand side is the total energy for all scales ωn, n = 1, 2, ..., excluding the
mean, i.e., the eddy energy. So the averaging on the right hand side is essential! One
cannot have it removed to gain ”local eddy energy”!

3.4. Multiscale energy with respect to filtering—Orthogonality is piv-
otal. For a filtered field with varying background: u = uL(t) + uH(t), what are the
energies corresponding to the low-pass and high-pass fields? Previously it has been
a common practice to simply take them as u2

L(t) and u2
H(t). As we explained in the

beginning in this section, this is conceptually wrong. So how can we find them?
By the foregoing argument, the energy for the low-pass field is ‖uL‖2, and that

for the high-pass field is ‖uH‖2. In order for them to sum to the total energy ‖u‖2,
i.e., in order to have

‖u‖2 = ‖uL‖2 + ‖uH‖2

there decomposition must be orthogonal (Gougu theorem/Pythagorean theorem)! So
NOT just any filter works for a physically faithful multiscale decomposition—
orthogonality is pivotal!

Note here we have only considered the total energy for each scale/scale window.
To find the energy on that scale/scale window localized at some location in physical
space, it is still a big challenge. This will be introduced in the following section.

4. Time-frequency/space-wavenumber decomposition.

4.1. The difficulty with the traditional multiscale decomposition tech-
niques. In the preceding section we have introduced the multiscale energy represen-
tation with respect to the traditional techniques such as Fourier analysis and Reynolds
decomposition, which are global in that the resulting multiscale energy does not have
local information retained. This global nature may encounter problems in dealing
with realistic atmosphere-ocean processes. For example, Fig. 4.1a is the time series of
the temperature at 10hPa over the North Pole. From it we see that, during some short
periods of the winters of 2011/12, 2012/13, 2014/15, the temperature can be as high
as its summer value. This phenomenon is called sudden stratospheric warming. If we



NCOADS Lecture Series #9 Copyright c© 2019 by X. San Liang 11

Fig. 4.1. The time series and Fourier power spectrum of the 10-hPa temperature over the
North Pole. In the spectrum the sudden warming event is not seen.

(a) (b)

Fig. 4.2. Reynolds decomposition applied to (a) an energy burst process, and (b) a process with
nonstationary background.

check the Fourier power spectrum, as shown in Fig. 4.1b, however, this conspicuous
abnormal warming event is absent.

The Reynolds decomposition does not retain local information retained, either.
For the energy burst process as shown in Fig 4.2a, by subtracting the mean from
the original series, we see perturbations everywhere on [0,1], while in reality nothing
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happens outside the burst region. The resulting eddy energy is hence a constant over
[0,1]; one cannot distinguish the motionless region from the energy burst region. An-
other example (Fig 4.2b) regards the perturbation from a nonstationary background.
By taking deviation from the mean, as indicated in the figure, the so-obtained per-
turbation is unrealistically large, much larger than that one can identify via visual
inspection.

4.2. Multiscale energy with orthonormal wavelets—Wavelet spectra
are NOT “biased” at all. The above difficulty with the traditional analysis tech-
niques has been identified as be a major challenge many decades agao. In 80’s and
90’s, there has been a surge of interest in developing localized analysis methods to
address the problem, e.g., wavelet transform, Hilbert-Huang transform, etc. In the
following we use wavelets to briefly illustrate how multiscale energy is represented
with a localized transform. Details are referred to Liu et al. (2007) and Liang and
Anderson (2007).

As before, consider a function u(t) defined on [0, 1]. Suppose we have a mother
wavelet ψ and hence a wavelet basis

ψj
n(t) = 2j/2ψ(2jt− n), t ∈ (−∞,∞) (4.1)

where the positive integer j ≥ 0 is scale level (2−j the scale), and integer n is a variable
in sampling space, corresponding to the physical space location. {ψj

n(t)} is different
from the traditional basis in that it is embedded with both dilation (j) and translation
(n); a multiscale analysis with respect to it hence can have local information retained,
in contrast to that with respect to, say, trigonometric basis. Further suppose that
{ψj

n} is orthonormal with respect to j and n in L2(−∞,∞). Recall u is on [0, 1],
which must be extended to the whole real line. There are many ways to fulfill this;
see Liang and Anderson (2007) for examples which are satisfactory in practice. Here
for illustration’s sake we just consider one of them, periodization.

It has been established that, after periodization, {φj
n(t)}t∈R yields a periodized

basis {φ̃j
n(t)}t∈[0,1], and now n takes values on a finite set (0, 1, ..., 2j − 1); detailed

expression is referred to Liang and Anderson (2007, section 2.3). Furthermore, it has
been proved that {φ̃j

n(t)} is also orthonormal in L2[0, 1] with respect to j and n.
So the reconstruction on a specific scale 2−j (or at scale level j) is

uj(t) =
2j

−1∑

n=0

ûj
nψ̃

j
n(t), j > 0, t ∈ [0, 1], (4.2)

where

ûj
n =

〈
u, ψ̃j

n

〉
=

∫ 1

0

u(t)ψ̃j
n(t)dt (4.3)

is the transform coefficient. Here we only consider the cases j > 0. For j = 0 with a
periodized basis, it is simply the mean ū, and the energy is (ū)2, as with the Reynolds
decomposition.

By the orthonormality of {ψ̃j
n}, the Parseval equality (3.6) implies,

2j
−1∑

n=0

[ûj
n]2 =

∫ 1

0

[uj(t)]2dt = [uj(t)]2. (4.4)
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The right hand side (r.h.s.) is the mean energy of u at level j. (Again the mean is
essential.) The l.h.s. is the sum of N = 2j parts, each representing the process on a
small interval Dn centered around tn = 2−jn, with a length of

∆t = 1/N = 2−j .

The r.h.s. can also be written as a sum of N parts,

[uj(t)]2 =

∫ 1

0

[uj(t)]2dt

2j
−1∑

n=0

∫ tn+∆t

tn

[uj ]2dt =

2j
−1∑

n=0

[uj(t)]2
Dn · ∆t. (4.5)

Note [uj(t)]2
Dn

is the mean energy on scale 2−j over Dn, i.e., the interval around
tn = 2−jn. (Note the mean!) Denote it by Ej

n. Comparing (4.4) and (4.5), we have
(Liu et al., 2007)

Ej
n =

1

∆t
[ûj

n]2 = 2j × [ûj
n]2. (4.6)

Figure 4.3 is the wavelet power spectrum of the time series in Fig. 4.1a. In contrast
to its Fourier counterpart (Fig. 4.1b), the sudden warming events are clearly seen.

Fig. 4.3. The wavelet power spectrum corresponding to Fig. 4.1 with respect to the orthonormal
wavelet basis constructed in Liang and Anderson (2007). The sudden warming event makes one of
most conspicuous features in the spectrum, in contrast to that in Fig. 4.1.

Historically, it has long believed that wavelet spectra are “biased” in that the
resulting multiscale energy is not consistent with that from Fourier power spectra; a lot
of studies have been conducted to address the “issue.” This is because people usually
take as the square of the transform coefficient as the energy on the corresponding scale,
just as Torrence and Compo (1998) did in their wavelet spectral analysis package, a
widely used software package. This is, unfortunately, NOT true. By (4.6), the
energy on a scale with an orthonormal wavelet basis is not the square

Yang Yang
Highlight
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of the transform coefficients, but the square of the transform coefficients
divided by the corresponding scale!

Liu et al. (2007) showed that the wavelet power spectra based on Eq. (4.6) are
consistent with their Fourier counterparts. The so-called “bias” issue is hence NOT
an issue at all. What we should bear in mind is that the Parseval equality, from which
we have derived (4.6), is the key; it lays the ground for multiscale energy analysis.

Notice that, just as before, the Parseval equality requires that the basis be or-
thonormal. So power spectral analysis with a non-orthonormal basis (just as that in
Torrence Compo, 1998) generally does not make sense in physics.

4.3. Scale window and multiscale window transform. More often than
not, oceanic and atmospheric processes tends to occur on a range of scales, or scale
windows, rather than some individual scale. For example, the ocean eddies may have
a life cycle from several days to half a year; the Madden-Julian Oscillation (MJO)
has a broadband spectrum between 30 and60 days. So, as mentioned before, we often
need to consider scale window decomposition.

Time

Sc
al

e 
in

de
x 

(f
re

qu
en

cy
)

Fig. 4.4. Schematic of the time-frequency representation of an orthonormal wavelet trans-
form. The transform coefficients, and hence energies, are defined discretely at different locations
for different scale levels (from Liang and Anderson 2007).

The scale windows of some space in L2[0, 1] are mutually orthogonal subspaces,
each with an exclusive range of scales. Note orthogonality is pivotal here; otherwise
we would not be able to talk about energy. One may tend to think that a straight
way to construct a scale window is simply to make direct sum across the scale levels
in a wavelet spectrum. But there is an issue here. As schematized in Fig. 4.4, the
energies on different scales are defined discretely at different locations. It is impossible
to study the energy at a particular location over a range of scales, as they cannot be
summed together across the scales at that location. (One cannot rely on interpolation
as the energies are discretely defined at the points.) So we have to seek other ways to
the problem. The following is extracted from Liang (2016), §2.

“Consider a Hilbert space Vℓ,j ⊂ L2[0, 1] generated by the basis {φj
n(t)}n=0,1,...,2jℓ−1,

where

φj
n(t) =

+∞∑

q=−∞

2j/2φ[2j(t+ ℓq) − n+ 1/2], n = 0, 1, ..., 2jℓ−1. (4.7)

Yang Yang
Highlight



NCOADS Lecture Series #9 Copyright c© 2019 by X. San Liang 15

Here φ(t) is a scaling function constructed in Liang and Anderson (2007) such that
{φ(t − n + 1/2)}n is orthonormal (Fig. 4.5). The parameter ℓ = 1 or ℓ = 2, corre-
sponding respectively to the periodic and symmetric extension schemes. Shown in
Fig. 4.6 is the basis for ℓ = 2 and a selection of j, namely, the “scale level” (2−j is
the scale). For notational simplicity, throughout this study the dependence of φj

n on
ℓ is suppressed (but retained in other notations).

−5 0 5

0

0.5

1

(a)  φ
3
(ω)

ω
−5 0 5

0

0.5

1

(b)  φ(ω)

ω
−5 0 5

0

0.5

1

(c)  φ(t)

t

Fig. 4.5. The orthonormal scaling function φ in frequency domain (middle) and time domain
(right) constructed from the cubic spline (left) (Liang and Anderson, 2007).
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n
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Fig. 4.6. φj
n as function of t (physical space variable; here time) and n (sampling space variable)

for a selection of scale level j (from Liang 2016).

It has been justified in Liang and Anderson (2007) that there always exists a j2
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such that all the atmospheric/oceanic signals of concern lie in Vℓ,j2 . Furthermore, it
has been shown in there that

Vℓ,j0 ⊂ Vℓ,j1 ⊂ Vℓ,j2 , for j0 < j1 < j2.

A decomposition thus can be made such that

Vℓ,j2 = Vℓ,j1 ⊕Wℓ,j1−j2 = Vℓ,j0 ⊕Wℓ,j0−j1 ⊕Wℓ,j1−j2 (4.8)

where Wℓ,j1−j2 is the orthogonal complement of Vℓ,j1 in Vℓ,j2 , and Wℓ,j0−j1 that of
Vℓ,j0 in Vℓ,j1 . It has been shown by Liang and Anderson (2007) that Vℓ,j0 contains
functions of scales larger than 2−j0 only, while lying in Wℓ,j0−j1 and Wℓ,j1−j2 are the
functions with scale ranges between 2−j0 to 2−j1 and 2−j1 to 2−j2 , respectively. We
call the so-formed subspaces of Vℓ,j2 as scale windows. For easy reference, from larger
scales (lower scale levels) to smaller scales (higher scale levels), they will be referred
to as scale windows 0, 1, and 2, respectively. Depending on the problem of concern,
they may also be assigned names in association to physical processes. For example,
one may refer to them as large-scale, mid-scale, and small-scale windows, or, in the
context of, say, MJO studies, mean window, intraseasonal window or MJO window,
and synoptic window, or, in the context of oceanography, large-scale window, meso-
scale window and sub-mesoscale window, etc. More scale windows can be likewise
defined, but usually three are enough (in fact in many cases only two are needed).

Consider a function u(t) ∈ Vℓ,j2 . With (4.7), a transform

ûj
n =

∫ ℓ

0

u(t)φj
n(t) dt, (4.9)

can be defined for a scale level j. Given window bounds j0 < j1 < j2, u then can be
reconstructed on the three scale windows as constructed above:

u∼0(t) =

2j0 ℓ−1∑

n=0

ûj0
n φ

j0
n (t), (4.10)

u∼1(t) =

2j1 ℓ−1∑

n=0

ûj1
n φ

j1
n (t) − u∼0(t), (4.11)

u∼2(t) = u(t) − u∼0(t) − u∼1(t), (4.12)

with the notations ∼0, ∼1, and ∼2 signifying respectively the corresponding three
scale windows. Since Vℓ,j0 , Wℓ,j0−j1 , Wℓ,j1−j2 are all subspaces of Vℓ,j2 , the functions
u∼0, u∼1, u∼2 can be transformed with respect to {φj2

n (t)}n, the basis of Vℓ,j2 ,

û∼̟
n =

∫ ℓ

0

u∼̟(t) φj2
n (t) dt, (4.13)

for windows ̟ = 0, 1, 2, and n = 0, 1, ..., 2j2ℓ − 1. Note here the transform coeffi-
cients û∼̟

n contains only the processes belonging to scale window ̟. It has, though
discretely, the finest resolution permissible in the sampling space on [0, 1]. We call
(4.13) a multiscale window transform, or MWT for short. With this, (4.10), (4.11),
and (4.12) can be written in a unified way:

u∼̟(t) =

2j2 ℓ−1∑

n=0

û∼̟
n φj2

n (t), ̟ = 0, 1, 2. (4.14)
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Eqs. (4.13) and (4.14) form the transform-reconstruction pair for MWT.
It can be proved that, for any u ∈ L2[0, 1],

u∼0(t) = ū = const .

So Reynolds decomposition is a very special MWT with two windows and j0 = 0 (and
a periodic extension is adopted).”

4.4. Multiscale energy with MWT. The following is from Liang (2016), sec-
tion 2b.

“MWT has a Parseval relation-like property; in the periodical extension case
(ℓ = 1),

∑

n

û∼̟
n v̂∼̟

n = u∼̟(t) v∼̟(t), (4.15)

for u, v ∈ V1,j2 , and because of the mutual orthogonality between the scale windows,

∑

̟

∑

n

û∼̟
n v̂∼̟

n = u(t)v(t), (4.16)

where the overline indicates averaging over time, and
∑

n is a summation over the
sampling set {0, 1, 2, ..., 2j2 − 1} (see Liang and Anderson (2007) for a proof). In the
case of other extensions,

∑
n is replaced by “marginalization”, a naming convention

after Huang et al. (1999), which also bears the physical meaning of summation over
n. Eq. (4.16) states that, a product of two MWT coefficients followed by a marginal-
ization is equal to the product of their corresponding reconstructions averaged over
the duration. This property is usually referred to as property of marginalization.

The property of marginalization is important in that it allows for an efficient
representation of multiscale energy in terms of the MWT transform coefficients. In
(4.16), let u = v, the right hand side is then the energy of u (up to some constant
factor) averaged over [0, 1]. It is equal to a summation of 3N = 3 × 2j2 (if 3 scale

windows are considered) individual objects (û∼̟
n )

2
centered at time tn = 2−j2n+1/2,

with a characteristic influence interval ∆t = tn+1 − tn = 2−j2 . The multiscale energy

at time tn then should be the mean over the interval:
(bu∼̟

n )2

∆t = 2j2(û∼̟
n )

2
. Notice

the constant multiplier 2j2 ; it is needed for the obtained multiscale energy to make
sense in physics. But for notational succinctness, it will be omitted in the following
derivations.

Therefore, the energy of u on scale window ̟ at step n is

E̟
n ∝ (û∼̟

n )2 . (4.17)

Note the ̟-window filtered signal is u∼̟; by the common practice one would take
(u∼̟)

2
as the energy on scale window̟. From above one sees that this is conceptually

incorrect.”
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PART II. MULTISCALE ENERGETICS—EDDY GEN-
ERATION, MEAN-EDDY INTERACTION, AND TUR-
BULENCE PRODUCTION

5. Issues with the classical empirical formalism. The mean flow-eddy in-
teraction is a fundamental problem in dynamic meteorology and physical oceanog-
raphy. Related to it are emergence of coherent structure, hydrodynamic stability,
turbulence production, relaminarization, atmospheric cyclogenesis, hurricane genera-
tion, ocean eddy shedding, to name a few. Central to the problem is the transfer of
energy between the mean and eddy processes as decomposed (cf. Fig. 1.3). Histor-
ically there have been two types of multiscale energetics, one in wavenumber space
(e.g., Saltzman, 1957), another in ensemble space. The former allows for us to ex-
amine the evolution of wavenumber spectra as coherent structures emerge and decay.
The disadvantage is that physical meaning is not easy to see in the complex mathe-
matical expressions of the nonlinear interactions between the spatial scales. On the
other hand, the statistical formalism with ensemble mean, which in practice is usu-
ally replaced by time mean, has clear physical interpretations for each of the resulting
terms (Lorenz, 1955). In this lecture, we only consider this type of formalism, or
Lorenz-type formalism.

5.1. Traditional cross-scale energy transfer with Reynolds decomposi-
tion. The classical Lorenz-type formalism of energy transfer can be best illustrated
with the Reynolds decomposed equations for the advection of a scalar field T = T̄+T ′

in an incompressible flow v, where the overbar stands for an ensemble mean, and the
prime for the departure from the mean. In the absence of diffusion, T evolves as

∂T

∂t
+ ∇ · (vT ) = 0, (5.1)

whose decomposed equations are

∂T̄

∂t
+ ∇ · (v̄T̄ + v′T ′) = 0, (5.2a)

∂T ′

∂t
+ ∇ · (v′T̄ + v̄T ′ + v′T ′ − v′T ′) = 0. (5.2b)

Multiplying (5.2a) by T̄ , and (5.2b) by T ′, and taking the mean, one arrives at the
evolutions of the mean energy and eddy energy (variance) (e.g., Pope 2003)

∂T̄ 2/2

∂t
+ ∇ · (v̄T̄ 2/2) = −T̄∇ · (v′T ′) (5.3a)

∂T ′2/2

∂t
+ ∇ · (vT ′2/2) = −v′T ′ · ∇T̄ . (5.3b)

The terms in divergence form are generally understood as the transports of the mean
and eddy energies, and those on the right hand side as the respective energy transfers.
The latter are usually used to explain the mean-eddy interaction. Particularly, when
T is a velocity component, the right hand side of (5.3b) has been interpreted as the
rate of energy extracted by Reynolds stress, or “Reynolds stress extraction” for short,
against the mean field to fuel the eddy growth; in the context of turbulence research,
it is also referred to as the “rate of turbulence production”.

An observation of the two “transfer terms” on the right hand sides of (5.3) is
that they are not symmetric; in other words, they do not cancel out each other. In
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fact, they sum to ∇ · (T̄v′T ′), which in general does not vanish. This is not what
one expects, as physically a transfer process should be a mere redistribution of energy
between the mean and eddy processes, without destroying or generating energy as a
whole. These two quantities therefore are not real transfers, and cannot be used to
measure the mean-eddy interaction.

5.2. Barotropic and baroclinic instabilities. The above problem arises from
the empirical definition of multiscale flux, which is quite ambiguous. For example,
can we say v̄T̄ 2/2 is the flux of mean energy and vT ′2/2 that of eddy energy? The
answer is not that clear. As argued by Plumb (1983), there could be other kinds of
fluxes which may result in totally different energy transfers. One way to overcome
this difficulty is to average/integrate all the energetics over a closed domain. In doing
this the divergences of fluxes that may be intertwined with the nonlinear term will be
gone, leaving only the transfers.

This is actually how it is treated in Pedlosky (1979). Consider a perturbation flow
v′ and perturbation density ρ′, and let c = g2/ρ2

0N
2 (N is the buoyancy frequency).

Then there will be an evolution equation like (5.3b) for eddy energy

Eeddy =
1

2
v′ · v′ +

1

2
cρ′2. (5.4)

Since the flux terms (transport) and transfers are difficult to be separated, a spatial
averaging over the whole domain is performed. The resulting equation is

∂〈Eeddy〉
∂t

=

〈
−cv′ρ′ ∂ρ̄

∂y
− cw′ρ′

∂ρ̄

∂z

〉
+

〈
−u′v′ ∂ū

∂y
− u′w′

∂ū

∂z

〉
, (5.5)

where the angle brackets indicate spatial averages over the whole domain. In Pedlosky
(1979), the eddy energy growth due to that in the first angle bracket is called baroclinic
instability, while that due the the second angle bracket is called barotropic instability.
Note in the case of quasi-geostrophic flow, the terms with w′ are all gone, and hence the
first angle bracket is only related to ∂ρ̄

∂y , which by thermal wind relation is proportional

to ∂ū
∂z ; similarly the second angle bracket is only related to ∂ū

∂y . That is to say, for
quasi-geostrophic flows, barotropic and baroclinic instabilities are, respectively, due
to horizontal and vertical shears of the basic flow. But generally this does not need
to be the case.

The concept of barotropic and baroclinic instabilities is very important in geo-
physical fluid dynamics. Eq. (5.5), however, is expressed in both temporal mean and
spatial mean, and hence cannot be used to investigate those processes such as coher-
ent structure emergence, cyclogenesis, eddy shedding, etc., which are in nature highly
localized in space and intermittent in time. Note that, as we elaborated in section 3.3,
the overbars (mean) in the equation are essential for multiscale energetics; it is con-
ceptually wrong to remove them to achieve temporal localization (as in many studies
in the literature). On the other hand, the angle brackets (spatial averaging) are also
important; without them the energy transfers may not be faithful.

To allow barotropic instability and baroclinic instability to play their due roles in
the studies of dynamic oceanography and meteorology, (5.5) must be localized. But
the localization is by no means as trivial as to get rid of the temporal and spatial
averages. The key issues here are:

• whether there is a localized multiscale decomposition technique to replace the
Reynolds decomposition;
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• whether the transport and transfer processes can be unambiguously sepa-
rated.

The following sections are devoted to answering these issues.

6. Multiscale transport and canonical transfer.

6.1. Multiscale flux with MWT. Within the framework of MWT, multiscale
flux can be rigorously derived, and hence the transport-transfer separation is made
unique. This section is extracted from Liang (2016), section 3a.

“As we showed in §4.4, for a scalar field T , its energy (quadratic property) on

window ̟ at step n is 1
2 (T̂∼̟

n )2 (up to some factor). In the MWT framework, energy
can be decomposed as a sum of a bunch of atom-like elements:

1

2
T 2 =

∑

n1,̟1

∑

n2,̟2

1

2

[
T̂∼̟1

n1
φj2

n1
(t)
] [
T̂∼̟2

n2
φj2

n2
(t)
]
. (6.1)

Look at the flux of the “atom” by a flow v(t) over t ∈ [0, 1] at step n within window
̟. It is

∫ 1

0

v(t) · 1

2

[
T̂∼̟1

n1
φj2

n1
(t)
] [
T̂∼̟2

n2
φj2

n2
(t)
]
· δ(n− n2) · δ(̟ −̟2) dt. (6.2)

In the above delta functions, the arguments may equally be chosen as n1 and ̟1. The
flux of 1

2T
2 by the flow v on ̟ at step n is then the sum of the atomic expressions

over all the possible n1, n2, ̟1, and ̟2, i.e.,

Q̟
n =

∑

n1,̟1

∑

n2,̟2

∫ 1

0

1

2
v ·
[
T̂∼̟1

n1
φj2

n1
(t)
] [
T̂∼̟2

n2
φj2

n2
(t)
]
· δ(n− n2)δ(̟ −̟2)dt

=
1

2

∫ 1

0

v(t)T (t) · T̂∼̟
n φj2

n (t)dt. (6.3)

But the function T̂∼̟
n φj2

n (t) lies in window ̟, and all windows are orthogonal, so this
is something like a projection of vT onto window ̟:

Q̟
n =

1

2

∫ 1

0

̂(vT )
∼̟

n · T̂∼̟
n φj2

n (t)dt

=
1

2
T̂∼̟

n
̂(vT )

∼̟

n . (6.4)

The above can be used for the derivation of multiscale potential energetics. For
kinetic energy K = 1

2v · v, essentially one can derive in the same way. To avoid
confusion, we consider the energy-like quantity of an arbitrary vector G,

K =
1

2
G ·G =

∑

n1,̟1

∑

n2,̟2

1

2

[
Ĝ∼̟1

n1
ϕj2

n1
(t)
]
·
[
Ĝ∼̟2

n2
ϕj2

n2
(t)
]
. (6.5)

So the flux of the “atom” over t ∈ [0, 1] at step n on window ̟ is

∫ 1

0

v(t)
1

2

[
Ĝ∼̟1

n1
ϕj2

n1
(t)
]
·
[
Ĝ∼̟2

n2
ϕj2

n2
(t)
]
δ(n− n2)δ(̟ −̟2)dt, (6.6)

and the flux of K by v on ̟ at n is

Q̟
n =

∑

n1,̟1

∑

n2,̟2

1

2
v(t)

[
Ĝ∼̟1

n1
ϕj2

n1
(t)
]
·
[
Ĝ∼̟2

n2
ϕj2

n2
(t)
]
δ(n− n2)δ(̟ −̟2)dt
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=
1

2

∫ 1

0

[v(t)G(t)] · Ĝ∼̟
n ϕj2

n (t)dt, (6.7)

where the dyadic vG takes right dot product with Ĝ∼̟
n . Again, Ĝ∼̟

n ϕj2
n (t) lies in

window ̟. Due to the orthogonality among windows,

Q̟
n =

1

2

∫ 1

0

[v(t)G(t)]
∼̟ · Ĝ∼̟

n ϕj2
n (t)dt

=
1

2
̂(vG)

∼̟

n · Ĝ∼̟
n

=
1

2

[
̂(vG1)

∼̟

n (̂G1)
∼̟

n + ̂(vG2)
∼̟

n (̂G2)
∼̟

n

]
, (6.8)

which is like the superposition of the fluxes of two scalar fields, namely, G1 and G2.”

6.2. Canonical transfer with MWT. Given the multiscale flux, it is now easy
to find the energy transfer. The following is from Liang (2016), section 3b.

“Consider a scalar property T in an incompressible flow field v. The equation
governing the evolution of T is

∂T

∂t
+ ∇ · (vT ) = other terms.

As only the nonlinear term namely the advection will lead to interscale transfer, all
other terms are unexpressed and put to the right hand side. To find its evolution on

window ̟, take MWT on both sides. The first term is
(̂

∂T
∂t

)∼̟

n
. It has been shown

by LR05 to be approximately equal to
δ bT∼̟

n

δn , where δ
δn is the difference operator with

respect to n. Since t of the physical space is now carried over to n of the sampling
space, the difference operator is essentially the time rate of change when applying

to a discrete time series. We therefore would write it as
∂ bT∼̟

n

∂t to avoid introducing
extra notations, which are already too many. But the careful reader should bear
in mind that here it means the difference in the sampling space rather than the
differential in the physical space. (Since the signals are sampled at each time step, in
real applications they are precisely the same.) The MWTed equation is, therefore,

∂T̂∼̟
n

∂t
+ ∇ · ̂(vT )

∼̟

n = ...

Multiplication of T̂∼̟
n gives

∂E̟
n

∂t
= −T̂∼̟

n ∇ · ̂(vT )
∼̟

n + ... (6.9)

where E̟
n = 1

2

(
T̂∼̟

n

)2

is the energy on window ̟ at step n.

One continuing effort in multiscale energetics study is to separate −T̂∼̟
n ∇ ·

̂(vT )
∼̟

n into a transport process term and a transfer process term. Symbolically
this is

−∇ ·Q̟
n + Γ̟

n .

An intuitively and empirically based common practice is to collect divergence terms
to form the transport term (e.g., Harrison and Robinson, 1978; Pope, 2003). However,
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as long pointed by people such as Holopainen (1978), Plumb (1983), among others,
there exist other forms that may result in different separations.

In this study, the separation is natural. The multiscale flux Q̟
n , hence the multi-

scale transport, has been rigorously obtained in the preceding subsection! The transfer
Γ is obtained by subtracting −∇ ·Q̟

n from the right hand side of (6.9):

Γ̟
n = −T̂∼̟

n ∇ · ̂(vT )
∼̟

n + ∇ ·
[
1

2
T̂∼̟

n
̂(vT )

∼̟

n

]

=
1

2

[
̂(vT )

∼̟

n · ∇T̂∼̟
n − T̂∼̟

n ∇ · ̂(vT )
∼̟

n

]
. (6.10)

Notice that the resulting transfer bears a form similar to the Lie bracket and, partic-
ularly, the Poisson bracket in Hamiltonian mechanics. Because of this, we will refer
it to as canonical transfer in the future, in order to distinguish it from other transfers
already existing in the literature.

Canonical transfers possess a very important property, as stated in the following
theorem.

Theorem 6.1. A canonical transfer vanishes upon summation over all the scale

windows and marginalization over the sampling space, i.e.,

∑

n

∑

̟

Γ̟
n = 0. (6.11)

Remark: This theorem states that a canonical transfer process only re-distributes
energy among scale windows, without generating or destroying energy as a whole.
This is precisely one would expect for an energy transfer process!

Proof. By the property of marginalization (4.15), Eq. (6.10) gives

∑

n

Γ̟
n =

1

2

∫ 1

0

[(vT )
∼̟ · ∇T∼̟ − T∼̟∇ · (vT )

∼̟
] dt.

Because of the orthogonality between different scale windows, this followed by a sum-
mation over ̟ results in

1

2

∫ 1

0

[(vT ) · ∇T − T∇ · (vT )] dt = 0.

In the above derivation, the incompressibility assumption of the flow has been used.
The canonical transfer (6.10) may be further simplified in expression when T̂∼̟

n

is nonzero:

Γ̟
n = −E̟

n ∇ ·
( ̂(vT )

∼̟

n

T̂∼̟
n

)
, if T̂∼̟

n 6= 0, (6.12)

where E̟
n = 1

2

(
T̂∼̟

n

)2

is the energy on window ̟ at step n, and is hence always

positive. Note that (6.12) defines a field variable which has the dimension of velocity
in physical space:

v̟
T =

̂(Tv)
∼̟

n

T̂∼̟
n

. (6.13)
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It may be loosely understood as a weighted average of v, with the weights derived
from the MWT of the scalar field T . For convenience, we will refer to v̟

T as T -

coupled velocity. The growth rate of energy on window ̟ is now totally determined
by −∇ · v̟

T , the convergence of v̟
T , and

Γ̟
n = −E̟

n ∇ · v̟
T . (6.14)

Note Γ̟
n makes sense even when T̂∼̟

n = 0 and hence v̟
T does not exist. In this case,

(6.14) should be understood as (6.10).”

6.3. Canonical transfer with Reynolds decomposition. Previously we have
shown that the Reynolds decomposition is a very special case of MWT when j0 = 0
and periodization is used for extension scheme. One naturally wants to know how
canonical transfer (6.14) or (6.10) may appear in that special case, as this will allow
us to see how it differs from the classical energy transform in (5.3). As when j0 = 0
and a periodization scheme is used, u∼0 = ū u∼j1 = u′ (Liang and Anderson, 2007),
it is easy to prove that (Liang and Robinson, 2007; Liang, 2016)

Γ1
n =

1

2

[
T̄∇ · (v′T ′) − (v′T ′)∇T̄

]
≡ Γ, (6.15)

Γ0
n = −Γ. (6.16)

Accordingly the energetic equations become

∂T̄ 2/2

∂t
+ ∇ ·

(
1

2
v̄T̄ 2 +

1

2
T̄v′T ′

)
= −Γ, (6.17a)

∂T ′2/2

∂t
+ ∇ ·

(
1

2
vT ′2/2 +

1

2
T̄v′T ′

)
= Γ. (6.17b)

For easy convenience, we re-write here the classical energy equations, i.e., (5.3):

∂T̄ 2/2

∂t
+ ∇ · (v̄T̄ 2/2) = −T̄∇ · (v′T ′),

∂T ′2/2

∂t
+ ∇ · (vT ′2/2) = −v′T ′ · ∇T̄ ,

and compare it to (6.17). The difference is clearly seen. In (6.17), the right hand sides
are now balanced, and energy is conserved—This is how canonical transfer earns its
name. Note we did not purportedly require that the right hand sides sum to zero; we
derived the equations in a rigorous way and they naturally appear this way.

6.4. Validation with Kuo’s barotropic instability model. In this section
a benchmark instability model with analytical solution is used to validate the afore-
obtained formula of canonical transfer. For clarity, we just consider the simplest case,
i.e., the case with the most special case of MWT—the Reynolds decomposition. But
before doing that, we need to extend (6.15), the formula with a passive scalar equation,
to a setting with momentum equation. This is easy to fulfill. One just needs to take
each component of v as the scalar field to compute the canonical transfer (6.15), then
sum all the resulting transfers. The resulting total canonical transfer is

Γ =
1

2

{
∇ · (v′v′) · v̄ − (v′v′) : ∇v̄

}
, (6.18)
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where the colon operator “:” is defined such that, for two dyadic products AB and
CD, (AB) : (CD) = (A · C)(B · D). The detailed derivation is referred to Liang
(2016).

Note the second part in (6.18),

−(v′v′) : ∇v̄ ≡ R,
is the classical Reynolds stress extraction of energy against the basic profile, which
has been used widely to interpret mean-eddy interaction, turbulence production, etc.
We will see through this concrete example how Γ differs from it.

Consider a well-studied barotropic instability model, the Kuo model, for the in-
stability of the zonal atmospheric jet stream (Kuo, 1948). Liang and Robinson (2007)
have constructed a particular solution with a highly localized structure which is ideal
for our purpose here. In the following we briefly present this solution, and then
calculate the transfer (6.18).

Choose a coordinate frame with x pointing eastward, y northward. The domain
is periodic in x, and limited within latitudes y = ±L, where a slip boundary condition
v = 0 is applied. Assume a basic velocity profile (cf. Fig. 6.1a)

ū(y) = ūmax cos2
(π

2

y

L

)
, ūmax > 0. (6.19)

The background potential vorticity q has a meridional gradient (cf. Fig. 6.1b)

q̄y = −ūyy = − π2

2L2
ūmax cos

πy

L
, (6.20)

which changes sign at y = ±L
2 , meeting the necessary condition for instability by

Rayleigh’s theorem (ibid). Decompose the flow as
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Fig. 6.1. Configuration of the Kuo model. (a) The basic flow profile ū = ū(y). (b) The
background potential vorticity. Marked are the two reflection points on the profile curve.

(u, v) = (ū(y), 0) + (u′, v′), (6.21)

and substitute back to the governing equations. Kuo considered only the initial stage
of instability when the perturbation field (u′, v′) is very small. So the resulting equa-
tions can be linearized. Assuming a solution of the form

(u′, v′) = (ũ(y), ṽ(y))eik(x−ct), (6.22)
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Kuo (1948) obtained an eigenvalue problem

d2ṽ

dy2
+

(
ūyy

c− ū
− k2

)
ṽ = 0, (6.23)

with boundary conditions

ṽ = 0, at y = ±L. (6.24)

The solution of (6.23) is not repeated here; the reader may refer to Kuo’s original
papers for details.

Kuo showed that, in addition to the qy inflection requirement, the difference
(ū − cr) (cr = Re{c} the mode phase velocity) must be positively correlated with q̄y
over [−L,L] in order for the perturbation to destabilize the jet. In other words, for
an instability to occur, it requires that

(1) q̄y change sign through y ∈ [−L,L] (Rayleigh’ theorem);
(2) (ū− cr) and q̄y be positively correlated over [−L,L] (Kuo’s theorem).

Hence the zero points of (ū − cr) and q̄y are critical. We will validate our transfer
formalism through examining the instability structures near these critical points. We
choose a particular unstable mode (and hence a particular cr) to fulfill the objective.

As shown in Liang and Robinson (2007), the wavenumber k = 3
4

π
L gives such

a mode; it lies within the unstable regime as computed by Kuo (1948). In fact, if
substituting back into the eigenvalue problem, one obtains, using the shooting method,

c = cr + ici = (0.4504 + 0.0476i)ūmax, (6.25)

yielding a positive growth rate kci > 0. Solved in the mean time is the corresponding
eigenvector ṽ, which substituted in (6.22) and the governing equations give a solution
of all the fields. The resulting phase speed cr = 0.4504ūmax and the gradient of the
basic potential vorticity q̄y give four critical values of y:

ū(y) − cr = 0 =⇒ y = ±0.53L,
q̄y = −ūyy = 0 =⇒ y = ±0.50L.

(6.26)

The four critical latitudes, as marked in Fig. 6.1b, partitions the y dimension
into five distinct regimes characterized by different values of K ≡ q̄y(ū − cr). For
most of y ∈ [−L, l], K > 0, but the positivity is interrupted by two narrow strips
near y = ±L/2, where K < 0. This scenario has profound implications by Kuo’s
theorem. Although Kuo’s theorem is stated in a global form, it should hold locally
within the correlation scale. In the present example, that means one of the necessary
conditions for barotropic instability is not met around the strips and so there should
be no instability occurring there.

Instability means a transfer of energy from the background to the perturbation
field, namely, a positive Γ. Using the particular solution obtained above, we compute
the transfer from (6.18). We adopt a zonal averaging, i.e., averaging in x, to fulfill
the decomposition. This is because, (1) ū itself does not have x-dependence and
hence can be understood as an x-average, and (2) the solution is homogeneous in
x due to the cyclic boundary condition. The computation is straightforward. The
result is plotted in Fig. 6.2a. Sure enough, Γ is not positive around the two narrow
strips; in fact, there is a strong negative transfer, i.e., upscale or inverse transfer
from the eddy window to the background. Moreover, the negative transfer is limited
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Fig. 6.2. The barotropic energy transfer (scaled by ū3
max/L) for the Kuo’s model: (a) the

perfect transfer Γ, which is 1

2

h

ū ∂u′v′

∂y
− u′v′ ∂ū

∂y

i

here by (6.18); (b) the Reynolds stress extraction

R, which is equal to −u′v′ ∂ū
∂y

here. The averaging is taken with respect to x.

within two narrow regimes, just as one may expect by Kuo’s theorem. In contrast, a
different scenario is seen on the profile of the conventional Reynolds stress extraction
R, which we plot in Fig. 6.2b. R is nonnegative throughout [−L,L]; particularly, it is
maximally positive over the narrow strip regimes, countering our foregoing intuitive
argument. Through this example, our perfect transfer Γ results in a scenario agreeing
well with the analytical result of the Kuo model, while the conventional Reynolds
stress extraction R does not.

7. Multiscale energetics and localized Lorenz cycle. The above theory can
be easily applied to derive the multiscale oceanic and atmospheric energetics. The
following is just a brief summary of the results. Details are referred to Liang (2016).
For notational brevity, from now on the dependence on n will be suppressed in the
MWT terms, unless otherwise indicated.

7.1. Multiscale oceanic energetics. For an incompressible and hydrostatic
Boussinesq fluid flow, the primitive equations are:

∂vh

∂t
+ vh · ∇hvh + w

∂vh

∂z
+ fk× vh = − 1

ρ0
∇hP + Fm,z + Fm,h (7.1)

∂P

∂z
= −ρg (7.2)

∇h · vh +
∂w

∂z
= 0 (7.3)

∂ρ

∂t
+ vh · ∇hρ+ w

∂ρ

∂z
=
N2ρ0

g
w + Fρ,z + Fρ,h, (7.4)

where the subgrid process parameterization are symbolically written as Fm and Fρ.
The symbols are conventional. The MWT-based multiscale ocean energetic equations
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were first derived by Liang and Robinson (2005), and updated in Liang (2016). They
can be written as

∂A̟

∂t
+ ∇ ·Q̟

A = Γ̟
A + b̟ + S̟

A + F̟
A,z + F̟

A,h, (7.5)

∂K̟

∂t
+ ∇ ·Q̟

K = ΓK̟ −∇ ·Q̟
P − b̟ + F̟

K,z + F̟
K,h, (7.6)

with the symbol expressions tabulated in Table 7.1. It should be mentioned that all
the terms are to be multiplied by a constant factor 2j2 , where j2 is the upper bound
of the scale level of the smallest scale window. Refer to Liang (2016) for expressions
in spherical coordinates.

Table 7.1

Multiscale energetics for oceanic circulations (Liang 2016). The units are in m2s−3 (if SI
units are used). The colon operator “:” is defined such that, for two dyadic products AB and CD,
(AB) : (CD) = (A ·C)(B ·D). All terms are to be multiplied by 2j2 , with j2 the highest scale level
of the series in question.

K̟ 1
2 v̂

∼̟
h · v̂∼̟

h KE on scale window ̟

Q̟
K

1
2 [ ̂(vvh)

∼̟
· v̂∼̟

h ] flux of KE on window ̟

Γ̟
K

1
2 [ ̂(vvh)

∼̟
: ∇v̂∼̟

h −∇ · ̂(vvh)
∼̟

· v̂∼̟
h ] canonical transfer of KE to window ̟

Q̟
P

1
ρ0

v̂∼̟P̂∼̟ pressure flux on window ̟

b̟ g
ρ0

ρ̂∼̟ŵ∼̟ buoyancy conversion on window ̟

A̟ 1
2c(ρ̂

∼̟)2, c = g2

ρ2

0
N2

APE on window ̟

Q̟
A

1
2 [cρ̂∼̟ (̂vρ)

∼̟
] flux of APE on window ̟

Γ̟
A

c
2 [(̂vρ)

∼̟
· ∇ρ̂∼̟ − ρ̂∼̟∇ · (̂vρ)

∼̟
] canonical transfer of APE to window ̟

S̟
A

1
2 ρ̂

∼̟ (̂ωρ)
∼̟

∂c
∂z apparent source/sink of A̟ (usually negligible)

7.2. Multiscale atmospheric energetics. Consider an ideal gas and assume
hydrostaticity to hold. In isobaric coordinates, the governing equations are:

∂vh

∂t
+ vh · ∇hvh + ω

∂vh

∂p
+ fk× vh = −∇hΦ∗ + Fm,p + Fm,h, (7.7)

∂Φ

∂p

∗

= −α∗, (7.8)

∇h · vh +
∂ω

∂p
= 0, (7.9)

∂T ∗

∂t
+ vh · ∇hT

∗ + ω
∂T ∗

∂p
− α∗ω

cp
=
q̇net

cp
, (7.10)

pα∗ = RT ∗, (7.11)

where q̇net stands for the heating rate from all diabatic sources, ω = dp
dt , and the

starred variables mean the whole fields, with the corresponding non-starred ones re-
served for their anomalies. The subscript h indicates the horizontal component on the
p plane; for example, v = (vh, ω), ∇ = (∇h,

∂
∂p ), and so forth. The other symbols are

conventional. With them Liang (2016) obtained the multiscale kinetic and available
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energy equations as follows:

∂K̟

∂t
+ ∇ · Q̟

K = Γ̟
K −∇ · Q̟

P − b̟ + F̟
K,p + F̟

K,h, (7.12)

∂A̟

∂t
+ ∇ · Q̟

A = Γ̟
A + b̟ + S̟

A + F̟
A . (7.13)

where the expressions for the energetics are listed in Table 7.2. Again, all the terms
are to be multiplied by a constant factor 2j2 , with j2 being the upper bound of the
scale level of the smallest scale window. Also tabulated are the expressions in spherical
coordinates (λ, ϕ, p) (Table 7.3).

Table 7.2

Multiscale energetics for the atmospheric circulation (Liang 2016). The units are in m2s−3 if
SI base units are used. If total or regional total energies (in W) are to be computed, the resulting
integrals with respect to (x, y, p) should be divided by g. All terms are to be multiplied by 2j2 .

K̟ 1
2 v̂

∼̟
h · v̂∼̟

h KE on scale window ̟

Q̟
K

1
2
̂(vvh)

∼̟
· v̂∼̟

h flux of KE on window ̟

Γ̟
K

1
2 [ ̂(vvh)

∼̟
: ∇v̂∼̟

h −∇ · ̂(vvh)
∼̟

· v̂∼̟
h ] canonical transfer of KE to window ̟

Q̟
P v̂∼̟Φ̂∼̟ pressure flux

b̟ ω̂∼̟α̂∼̟ buoyancy conversion

A̟ 1
2c(T̂

∼̟)2, c = g
T̄ (g/cp−L)

APE on scale window ̟

Q̟
A

1
2cT̂

∼̟ ̂(vT )
∼̟

flux of APE on window ̟

Γ̟
A

c
2 [ ̂(vT )

∼̟
· ∇T̂∼̟ − T̂∼̟∇ · ̂(vT )

∼̟
] canonical transfer of APE to window ̟

S̟
A

1
2 T̂

∼̟ ̂(ωT )
∼̟

∂c
∂p + 1

T̄
(̂ωα)

∼̟
apparent source/sink (usually negligible)

Table 7.3

Expansion of the canonical transfers in Table 7.2 in spherical coordinates (Liang 2016).

Γ̟
K

1
2a cos ϕ

[
(̂u2)

∼̟
∂bu∼̟

∂λ − û∼̟ ∂ d(u2)
∼̟

∂λ + (̂uv)
∼̟

∂bv∼̟

∂λ − v̂∼̟ ∂ d(uv)
∼̟

∂λ

]

+ 1
2a

[
(̂uv)

∼̟
∂bu∼̟

∂ϕ − û∼̟ ∂ d(uv)
∼̟

∂ϕ + (̂v2)
∼̟

∂bv∼̟

∂ϕ − v̂∼̟ ∂ d(v2)
∼̟

∂ϕ

]

+ 1
2

[
(̂uω)

∼̟
∂bu∼̟

∂p − û∼̟ ∂ d(uω)
∼̟

∂p (̂vω)
∼̟

∂bv∼̟

∂p − v̂∼̟ ∂ d(vω)
∼̟

∂p

]

+ 3
2a tanϕ

[
û∼̟(̂uv)

∼̟
− v̂∼̟ (̂u2)

∼̟]

+ 1
2a v̂

∼̟ tanϕ
[
(̂u2)

∼̟
+ (̂v2)

∼̟]

Γ̟
A

c
2

[
1

a cos ϕ (̂uT )
∼̟

∂ bT∼̟

∂λ + 1
a (̂vT )

∼̟
∂ bT∼̟

∂ϕ + ̂(ωT )
∼̟

∂ bT∼̟

∂p

− 1
a cos ϕ T̂

∼̟ ∂ d(uT )
∼̟

∂λ − 1
a cos ϕ T̂

∼̟ ∂[ d(vT )
∼̟

cos ϕ]
∂ϕ − T̂∼̟ ∂ d(ωT )

∼̟

∂p

]

7.3. Localized Lorenz cycles. Based on the above results, the energy cycle,
or Lorenz cycle as called, can be localized, since each energetic term is essentially a
4D field variable due to the localized nature of MWT. A localized Lorenz cycle for an
ideal fluid without external forcing is made of the following four types of conservative
processes:

• transports which integrate to zero over closed domain;
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Fig. 7.1. Schematic of energy transfer and buoyancy conversion for (a) two-window and (b)
three-window decomposition. Clearly buoyancy conversions are not indicators of instabilities (from
Liang 2016).

• canonical transfers which sum to zero over all scale windows and sampling
space locations;

• buoyancy conversions which sum to zero over mechanical energy type (e.g.,
KE or APE).

The partial cycle for a three-scale window decomposition is schematized in Fig. 7.1.
For clarity, transport and some other processes are not drawn here. As is seen, canon-
ical transfers mediate between the scale windows; they represent the interscale pro-
cesses such as instabilities. In contrast, buoyancy conversions and transports function
only within the respective individual windows; the former bring together the two types
of energy, namely, APE and KE, while that latter allow different spatial locations to
communicate.
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PART III. EXEMPLARY APPLICATIONS

Fig. 8.1. An anticyclonic eddy shed into the South China Sea through the Luzon Strait (Zhao
et al., 2016).

8. Eddy shedding into the South China Sea through Luzon Strait.

9. Kuroshio dynamics in East China Sea.

10. Kuroshio Extension.

11. Sudden stratospheric warming in the 2012/13 winter.

12. Atmospheric blocking over the Atlantic Ocean.

13. On the inverse relationship between the jet stream strength and
storm intensity in the Pacific storm track.




