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ABSTRACT

Dynamical Dependencies 
at Monthly and Interannual 
Time Scales in the Climate 
System: Study of the North 
Pacific and Atlantic Regions

STÉPHANE VANNITSEM 

X. SAN LIANG 

The directional dependencies of different climate indices are explored using the Liang-
Kleeman information flow in order to disentangle the influence of certain regions 
over the globe on the development of low-frequency variability of others. Seven key 
indices (the sea-surface temperature in El-Niño 3.4 region, the Atlantic Multidecadal 
Oscillation, the North Atlantic Oscillation, the North Pacific America pattern, the Arctic 
Oscillation, the Pacifid Decadal Oscillation, the Tropical North Atlantic index), together 
with three local time series located in Western Europe (Belgium), are selected. The 
analysis is performed on time scales from a month to 5 years by using a sliding window 
as filtering procedure.

A few key new results on the remote influence emerge: (i) The Arctic Oscillation plays a 
key role at short time (monthly) scales on the dynamics of the North Pacific and North 
Atlantic; (ii) the North Atlantic Oscillation is playing a global role at long time scales 
(several years); (iii) the Pacific Decadal Oscillation is indeed slaved to other influences; 
(iv) the local observables over Western Europe influence the variability on the ocean 
basins on long time scales. These results further illustrate the power of the Liang-
Kleeman information flow in disentangling the dynamical dependencies.
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1. INTRODUCTION

Long-term forecasting from seasonal-to-decadal time 
scales of the atmospheric evolution is based on the 
main hypothesis that there are low-frequency signals 
embedded in its dynamics either associated with an 
internal variability or with external interactions with 
the other components of the climate system. One key 
source of such low-frequency variability originates from 
the slow dynamics of the coupled ocean-atmosphere in 
the Tropical Pacific, e.g. Philander (1990); Alexander et al. 
(2002); Liu and Alexander (2007); Tsonis and Swanson 
(2012); Stan et al. (2017); Soulard et al. (2021). Other 
sources can also be at the origin of this low-frequency 
variability, like the local interaction between the ocean 
and the atmosphere in the extratropics, e.g. Mantua 
et al. (1997); Kravtsov et al. (2007); Gastineau et al. 
(2013); Vannitsem and Ghil (2017), or the interaction 
with the Polar regions (Wang et al., 2017). Disentangling 
the impact of the potential sources of low-frequency 
variability on the different regions all over the World are 
essential to properly address the limits of predictability.

Usually the analysis of the impact of a region on 
another is done through either teleconnection analysis 
based on correlation, e.g. Philander (1990), or by 
investigating the sensitivity of the climatology of a 
region in a climate model by forcing another key region, 
e.g. Johnson et al. (2020). These approaches, although 
useful, do not allow to disentangle the one-way or two-
way interactions between remote regions. During the 
last decades, there were considerable efforts devoted to 
the development of approaches allowing to clarify the 
causality between different observables, see the recent 
reviews of Palus et al. (2018); Runge et al. (2019), and 
some applications to atmospheric and climate data, e.g. 
Mosedale et al. (2006); Wang et al. (2009); Tsonis et al. 
(2015); Vannitsem and Ekelmans (2018); Vannitsem 
et al. (2019); Di Capua et al. (2020).

One very useful approach developed in Liang and 
Kleeman (2005) and Liang (2014a; 2016) is based on the 
rate of information flow in dynamical systems. Based on 
this theoretical background, Liang (2014b) developed a 
simple method to estimate the rate of information flow 
in 2-dimensional linear stochastic systems, and extended 
it to multi-variate linear stochastic systems, see Liang 
(2021). The latter development allows for an analysis 
of the multiple influences among a set of observables, 
and the construction of a dynamical dependence graph. 
This is the approach we will adopt in the present work 
to disentangle the influence of certain climate indices on 
the development of low-frequency variability on others.

We focus here on a set of indices that were produced 
to characterize the observed large scale dynamics of 
the atmosphere and the oceans from 1950 to 2020 at 
monthly time scale, and a set of local observables over 
Belgium (temperature, precipitation and insolation). 

The latter are used to clarify the local role of large-scale 
features. As we will see there are surprising influences of 
the local observables on the global ones. The indices used 
are characterizing the slow dynamics over the North and 
Central Pacific and and the North and Central Atlantic.

In Section 2, the data used are briefly presented. Section 
3 is then devoted to the description of the methodology 
adopted here. The results are then presented in Section 4, 
and finally Section 5 is summarizing the results.

2. DATA

The current analysis is performed on a set of key indices 
that were found to show low-frequency variability on 
monthly to decadal time scales. These indices can be 
found on the website of the NOAA at https://psl.noaa.gov/

data/climateindices/list/, last time accessed on March 2021. 
The specific selection is made to clarify the dependencies 
between the Tropical and North Pacific Basins, and the 
North Atlantic basin, together with their possible influence 
on Western Europe at midlatitude. For a detailed discussion 
of several of these indices, please see Deser et al. (2010).

•	 The Pacific North American (PNA) Pattern is a 
dominant mode of variability in the extratropical 
regions over the Pacific. In its positive phase, the 
atmosphere over the Pacific is charaterized by an 
enhanced East Asian jet stream and an eastward 
shift of the jet exit region toward the western United 
States, while in the negative phase a westward 
displacement of the jet stream toward eastern Asia is 
experienced. This is associated with much less zonal 
dynamics, e.g., Wallace and Gutzler (1981).

•	 The North Atlantic Oscillation (NAO) pattern is also a 
dominant mode of variability characterized by basin-
wide changes of the variability of the jet stream over 
the North Atlantic, Barnston and Livezey (1987).

•	 The Arctic Oscillation (AO) is an index based on the 
projection of the 1000hPa height anomalies on its 
first EOF pattern poleward of 20° North, Thompson 
and Wallace (1998).

•	 The Atlantic Multidecadal Oscillation (AMO) is the 
standardized index of the projection of the Sea 
Surface Temperature in the Pacific (detrended) 
poleward 20N on the dominant Empirical Orthogonal 
Function, e.g., Enfield et al. (2001). Note that 
detrending the data to remove the long-term climate 
change signal in the sea surface temperature could 
have some impact on the amplitude and the phase 
of the AMO signal as discussed in Mann et al. (2014).

•	 The Pacific Decadal Oscillation (PDO) is, as the AMO, 
the standardized index of the projection of the 
Sea Surface Temperature in the Pacific (detrended) 
poleward 20N on the dominant Empirical Orthogonal 
Function, e.g., Deser et al. (2010).

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
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•	 The Tropical North Atlantic (TNA) index is the 
dominant-EOF-based reconstructed time series of 
the Sea Surface Temperature (detrended) anomalies 
of the Tropical North Atlantic region 5.5N–23.5N, 
57.5W–15W, Enfield et al. (1999).

•	 The well-known Niño 3.4 index corresponds to the 
standardized anomaly of Sea Surface Temperature in 
the Tropical region 5S-5N, 170W–120W. This will be 
referred to as El-Niño in the sequel or Nino in the figures.

•	 Three monthly time series of temperature, 
precipitation and insolation (hours per months) 
recorded at the reference station Uccle-Ukkel in 
Belgium. These three monthly time series are 
available in a supplementary file.

All these monthly indices and time series cover the period 
from January 1950 to December 2020. The time series 
for the El-Niño 3.4 and the temperature T2m in Uccle-
Ukkel are both linearly detrended to get a stationary time 
series. The analysis is done using monthly anomalies, 
after removing the monthly means.

3. THE METHOD
3.1 THE LIANG-KLEEMAN INFORMATION 
TRANSFER
The last decades have seen the development of techniques 
to disentangle the dependencies between different obser-
vables, going beyond the classical correlation analysis, e.g. 
Liang (2014a;b; 2016; 2021). These techniques are belonging 
to the field of causal inference. Traditionally causal inference 
has been formulated as a statistical testing problem ever 
since the seminal work by Granger (1969). Recently it is 
found that causality is actually a real physical notion that 
can be rigorously derived from first principles (Liang, 2016) 
in terms of information transfer, or information flow as it 
is referred to in the literature. Though with a rich history of 
research for more than 40 years, information transfer has 
just been rigorously formulated, initially motivated by the 
predictability study and data assimilation in atmosphere-
ocean science (Liang and Kleeman 2005). Since then it has 
been validated with many benchmark dynamical systems 
such as baker transformation, Hénon map, Rössler system, 
etc. (cf. Liang 2016), and has been applied with success 
to problems in different disciplines; refer to Liang (2021), 
section 2, for a gentle stroll of the material. The following is 
just a brief introduction of the concepts and formulae that 
pertain to this study.

Consider a dynamical system

 ( ) ( )F ; ; ,d t dt t d= +X X B X W  (1)

where X = (X1, X2, …, Xν)
T is a ν-dimensional vector of 

state variables, F a vector of functions, B = (bij) a ν-by-m 
matrix of stochastic perturbation amplitudes, and W an 
m-vector of standard Wiener processes (Ẇ stands for 

a vector of white noises). As conventional, a random 
variable is denoted with an upper-case symbol, and the 
corresponding deterministic variable is denoted with its 
lower-case counterpart.

Under a weak assumption that F and B are differen-
tiable vector functions, Liang (2016) established that 
the amount of Shannon entropy, also known as self-
information (e.g., Cover and Thomas, 1991), transferred 
from X2 to X1 per unit time, is:
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where E stands for mathematical expectation, ρ1 = ρ1(x1) 
is the marginal probability density function (pdf) of X1, 

22 dxr r= ò  , and 11 2 11 1 1 .m
j j jg b b T ==å  is the information 

transfer from X2 to X1 (in nats per unit time); also it is often 
referred to as information flow. In literature information 
transfer and information flow are used interchangeably. 
Ideally if T2→1 = 0, then X2 is not causal to X1; otherwise 
it is causal (for either positive or negative values). But in 
practice significance test is needed.

It has been established that T2→1 is generally not equal 
to T1→2, this is the asymmetry of causality between two 
variables, in contrast to the symmetric form of correlation. 
Correlation/association will be established between two 
variables, say X1 and X2, due to the following five reasons:

(1) X1 causes X2 but X2 is not causal to X1;
(2) X2 causes X1 but not the other way around;
(3) X1 and X2 are mutually causal;
(4)  X1 and X2 are not directly linked but both are caused 

by a common driver, say X3;
(5)  X1 (X2) causes X2 (X1) via n other intermediate 

variables.

These cases, which are difficult to disentangle in statistics, 
can be easily distinguished, thanks to a property of 
information flow/transfer, which asserts that, if the evolution 
of X1 is independent of X2, then T2→1 = 0. This “principle 
of nil causality” is a quantitative fact that all causality 
analyses try to verify in applications, while here it is a proven 
theorem. More often than not, for cases 1–3, it is easy to 
conclude with a mutually causal relation; for cases 4 and 
5, spurious causal relation may result. But in the framework 
of information flow/transfer, these are not problems, at 
least from a theoretical point of view. Particularly, for case 
5, there is no direct causal relation between X1 and X2, but 
there does exist causality between a series with the delayed 
series of another (delayed by n step).

Generally T2→1 depends on (x3, …, xν) as well as (x1, 
x2), and, as shown above, the order of the variables. But 
it has been established that (Liang, 2018) T2→1 in (2) is  
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invariant upon arbitrary nonlinear transformation of (x3, 
x4, …, xν), indicating that information flow is an intrinsic 
physical property.

With an assumption of linear systems and the noises 
are independent, the formula (2) can be greatly simplified, 
and, moreover, easily estimated based on observational 
data (Liang 2014b; 2021). Suppose we have ν time series, 
Xi, i = 1, …, ν, and these series are equi-spaced, all having 
N data points Xi(n), n = 1,2, …, N. Generate a new series 
Ẋi such that

( )
( ) ( ) 1 –i i

i

X n X n
X n

t

+
=

D

where Δt is the time stepsize (not essential; only affect 
the units). Let Cij be the sample covariance between Xi 
and Xj, and Ci,dj the sample covariance between Xi and Ẋj. 
It has been shown that he maximum likelihood estimator 
(MLE) of the information transfer from X2 to X1 is
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where Δij are the cofactors of the covariance matrix 
C = (Cij), and det C is the determinant of C. Same can be 
done to derive the MLE of T1→2, 1 2T̂  . But the easiest way is 
simply to swap the indices in (3).

When ν = 2, the above equation reduces to
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This is the MLE of the bivariate information flow/transfer 
as obtained in Liang (2014b) and frequently used in 
applications.

As the adage goes, causation implies correlation, but 
correlation does not imply causation. In (3), when two 
variables, here X1 and X2, are not correlated, C12 = 0, then 
T2→1 = T1→2 = 0. But it does not hold conversely. The formulas 
for T2→1 and T1→2 hence provides a transparent mathematical 
expression for the interpretation of the adage.

It should be noted that (3) is just the MLE of (2). 
Beside, in real applications, whether a quantity vanishes 
should be asked statistically whether it is significantly 
different from zero. So significance test is needed for 
the calculated T2→1 and T1→2. A simple way has been 
proposed with the aid of Fisher information matrix; see 
Liang (2021). More sophisticated method is yet to be 
implemented, however. Here we will use a bootstrap 
method with replacement, as in Vannitsem et al. (2019).

Note that the results that will be presented in the 
following are normalized in such a way that all influences 
of one specific observable are put on the same ground. 
It will give a percentage of influence of the 9 other 
observables on the target one. The normalization factor 
in the multivariate case is as in Liang (2021):
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dt  and 1

noisedH

dt  are the self-contribution and the 
noise contribution, respectively.

The relative transfer of information from X2 to X1 is 
then given by,
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This quantity will be displayed for the set of observable 
presented at section 2, for all the pairs of observables.

3.2 THE AVERAGING METHOD
A key objective of climate modelling is to describe the 
dynamics of the moments of the short-scale atmospheric 
variability (mean, variance…) on time scales from seasons 
to centuries. The current approach of that problem is to 
numerically integrate a comprehensive Earth system 
model including all the details of the dynamics of all 
its components and to compute moments of the short 
scale variables. This highly computer time demanding 
approach is however not the only one. A systematic 
derivation of the dynamical equations for these moments 
is an alternative approach that has been started 
some years ago, e.g. Nicolis and Nicolis (1995; 1998); 
Vannitsem and Nicolis (1998); Essex (2011). In Essex 
(2011), the difficulties of developing such equations are 
discussed, which is probably one of the most challenging 
mathematical problems of our time. In the approaches 
developed in that direction so far, one possible averaging 
approach is the running mean defined as

 ( ) ( )
/2

– /2

1 S

S
q t d q t

S
t t= +ò  (5)

where q is one variable of the system. This type of averaging 
acts as a low-pass filter, Nicolis and Nicolis (1995), which 
has been used in many different context to investigate the 
climate dynamics, e.g. Saltzman (1983), the predictability 
in the extended range, e.g. Roads (1987); Vannitsem 
and Nicolis (1998), or more advanced properties of the 
attractor of the climate system, e.g. Faranda et al. (2019).

This type of averaging is adopted here, as it allows for 
filtering out high frequencies, while keeping a number of 
data points of the same order as the original time series.

The impact of the averaging method is to filter small-
scale variability, and to select slower time scales. In the 
computation of the rate of information flow, the impact is 
twofold: (i) the fast variability (zero-mean noise) around 
the sliding average are removed, and (ii) while taking the 
difference of sliding averages, the tendencies become 
discrete time derivatives on a time scale S = LΔt.

4. RESULTS

The analysis is split into 3 different regions. First, the focus 
is placed on the two-way dependencies of the indices 
over the Tropical and North Pacific. Second, the analysis 
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will focus on the North Atlantic region and the Arctic, and 
finally, the dependencies of the local observables over 
Belgium are investigated.

4.1. PACIFIC DEPENDENCE PATTERNS
Figure 1 displays the rate of transfer of information 
between El-Niño 3.4 and all the other observables listed 
in Section 2. In each panel, two curves are displayed 
as a function of the sliding window used for averaging, 
a curve for the rate of information transfer from one 
observable to El-Niño 3.4 (squares, red curve) and a curve 
with the rate of information transfer from El-Niño to the 
same observable. In that way the asymetry of transfer of 
information can be evaluated. The quantity is normalized 
as discussed in Section 3.1. A bootstrap method with 
replacement is used to infer the uncertainty of these 
quantities. When the zero line is crossing the error bar at 
the 95% dependence is assumed.

This approach is challenged in Appendix 8 by building a 
surrogate dataset based on the original data themeselves, 
which revealed that the approach proposed is appropriate. 
It is however important to mention that the multiplication 
of tests opens the possibility of an increase number of 
false positive. So when the zero line is close to the margins 
of the bootstrap sampling, the alleged dependencies 
should be taken with caution. This is kept in mind when 
discussing the results.

One key feature appearing in this figure is the strong 
link between the PNA and El-Niño on time scales from, say, 
a few months until 4 years (panel (d)). PNA contributes for 
more than 30% indicating that PNA tends to constrain the 
variability of El-Niño. On the other hand, El-Niño is also 
influencing PNA, but now with a positive value, suggesting 
that El-Niño tends to increase the variability of PNA. A similar 
influence of El-Niño on PDO is found (panel e), but now 
PDO does not influence El-Niño. This type of dependencies 
over the Pacific are already well documented, see for 
instance Lin and Derome (2004); Liu and Alexander (2007); 
Newman et al. (2016), but this analysis provides a clear 
indication of the presence of a dynamical dependence 
together with the type of constraint imposed by one 
variable on the other. Interestingly the key role played by 
El-Niño on PDO at all scales put forward by Newman et al. 
(2003; 2016) and the role of the atmospheric variability 
over the North Pacific on El-Niño discussed in Ding et al. 
(2017) are indeed confirmed by the analysis.

Another important dependence on a shorter time 
scale is found between TNA and El-Niño (panel g). TNA 
influences El-Niño on time scales of a few months, 
constraining its variability. While El-Niño is influencing 
TNA for a larger range of sliding windows up to a bit 
more than 2 years, tending to increase the variability of 
TNA. This control on cross-basins is clearly occurring on 
seasonal to interannual time scales.

Figure 1 The rate of information transfer as a function of the averaging sliding window. All interactions with El-Niño 3.4.
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In panel (i) the dependencies between NAO and El-
Niño are depicted. It is interesting to note that there 
is no dependence detected by the Liang-Kleeman 
method from El-Niño to NAO, but contrarily an important 
dependence is found from NAO to El-Niño for large 
sliding windows, suggesting an influence of NAO on 
the Low-frequency variability of El-Niño at these slow 
time scales. To our knowledge this feature has not been 
reported yet and seems not to be supported by other 
analysis of dependencies based on the Granger causality 
approach, see Mokhov and Smirnov (2006). This question 
is worth investigating further in more details with other 
approaches and in a similar analysis setting in the future.

For the other observables, dependencies are not 
detected, except marginally between the AO and El-Niño 
(panel f), from El-Niño on AMO (panel h), and from T2m 
on El-Niño (panel a). The latter is rather surprising, but 
it would suggest that the extratropical dynamics over 
the continental zones also display an influence on the 
Tropical pacific dynamics. This will be discussed further 
in Section 4.3.

A second important pattern is the Pacific North 
America pattern, known to play an important role in the 
dynamics in the extratropics, see e.g. Liu and Alexander 
(2007). Figure 2 shows the rate of information transfer 
from and to PNA, based on the ensemble of variables 
as for El-Niño. Panel (f) has already been discussed 

when discussing the results of Figure 1, but kept here for 
consistency with the other figures.

A first very interesting feature appearing in panels (a) 
and (b) is the dependence of the T2m and Precipitation 
over Belgium to PNA for long sliding windows filtering 
out high frequencies of the observables. Anticipating the 
results discussed in Section 4.3, an influence on the LFV 
over western Europe is associated with PNA, constraining 
the variability of temperature, but increasing the variability 
of precipitation.

Another interesting feature is the influence of PNA 
on PDO, illustrated in panel (e). The black curve shows 
significant positive values for windows of a few months 
and significant negative values around 3 years. The high 
frequency variability of the NAO induces an increase of 
variability of PDO, but for long averages, the NAO tends to 
reduce the variability of the PDO, although quite weakly 
in view of its marginality to 0. The inversion of sign of 
the dependencies is an interesting feature suggesting 
that observables can play different roles at different time 
scales. Such a specific property is worth addressing in the 
context of simple climate models in order to figure out 
what are the properties of the models which are driving 
this type of transition.

Finally, among the other panels, a marginal depen-
dence emerges between the TNA and PNA for large 
sliding windows. This specific teleconnection is probably 

Figure 2 The rate of information transfer as a function of the averaging sliding window. All interactions with PNA.
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harder to understand than the others, but we should 
keep in mind that not all possible observables were 
selected, which could induce some detection associated 
with other pathways.

Concerning the influence of PDO, the only pathways 
found are toward TNA and AMO on long time scales, See 
Figure A1 in the Appendix. This feature suggests a link 
between the variability of the different ocean basins. 
These specific dependencies are still not clear for us at 
this stage, but the absence of influence of PDO on the 
majority of the observables tends to confirm the view that 
PDO is the byproduct of the influence of many different 
processes as suggested in Newman et al. (2016).

4.2. NORTH ATLANTIC AND ARCTIC 
DEPENDENCE PATTERNS
Let us now turn to the Arctic-North Atlantic region. In 
Figure 3, the influences from and to AO are displayed. A 
first remark is to see that the only observable influencing 
AO is the NAO for very large sliding windows (panel i). 
The amplitude of this influence is very large and positive. 
This result suggests that NAO is increasing the low-
frequency variability of the AO. On the other hand, the AO 
is influencing the NAO for shorter sliding windows of the 
order of the year. A two-way dynamical control is found 
for these two patterns but on different frequencies of the 
variability.

Another interesting feature is the influence of AO on the 
different observables over Belgium for windows at intra-
annual time scales (panels a, b and c), suggesting a role 
of the AO for intra-annual evolution of the climate over 
Belgium. This role does not seem extremely strong, but is 
worth investigating further in the future when investigating 
the possibility for seasonal forecasts over this region.

A slight influence of the AO on PNA, PDO, El-Niño 
(already reported), and TNA is also emerging at the 95% 
from a few months to a couple of years.

The analysis of the role of the AO is interesting as it 
suggests that this pattern is a key driver of the dynamics at 
different place of the world, and in particular over Western 
Europe, of the variability of seasonal to interannual time 
scales.

Let us now turn to the NAO (Figure 4). Surprisingly, the 
NAO does not show any influence on the variability over 
Belgium (panels a, b and c). It however shows influences 
on the PDO, El-Niño (already reported), TNA and AO on 
large sliding windows, reflecting its role on controlling 
the variability at long time scales. This makes of NAO 
a key actor of the long term dynamics of the climate 
system as El-Niño is.

There is also a strong influence of the NAO on AMO on 
seasonal to interannual windows (panel h). It is however 
interesting to note tha there is no substantial influence of 
the AMO on NAO at the time scales we are interested in here.

Figure 3 The rate of information transfer as a function of the averaging sliding window. All interactions with AO.
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These results should also help in clarifying the 
respective role of the AO and NAO in the dynamics of the 
climate system, as discussed in Ambaum et al. (2001). 
The AO is driving the variability on different time scales 
than the NAO, the former being active at short time 
scales (seasonal to interannual), while NAO on long time 
scales (from 2–3 years to 5). So both are important, and 
there is no reason to think that one of them has a more 
important role to play than the other.

The influence on AMO and TNA are also displayed 
for completeness in Figs. A2 and A3, respectively. The 
dominant influence is the two-way interaction between 
AMO and TNA, which can be explained by their proximity 
and the presence of ocean tunnels in that region, see Liu 
and Alexander (2007). The other dependencies with TNA 
and AMO are explained when discussing the results of 
the other targeted observables.

4.3. REGIONAL DEPENDENCE PATTERNS OVER 
BELGIUM
Let us now investigate the dependencies of the observab-
les recorded over Belgium. Figure 5 displays the dependen-
cies between temperature at 2 meters with the other 
observables. A first interesting result is the absence of 
dependencies with the other observables measured locally, 
precipitation and insolation. These seem to be related to 
different dynamical processes, even if we could expect some 

climatic relationship like the Clausius-Clapeyron relationship 
linking the water vapor content to the temperature (and 
hence the precipitation amounts). This type of feature does 
not appear in the current data analysis.

The only observables that significantly influence the 
temperature at 2 meters are the AO pattern on short 
time scales and the PNA pattern on long time scales. 
These interesting features suggest a possible forecasting 
system for temperature over Belgium based on these 
two patterns. This will be explored in the future.

Another interesting result is the (marginal) dependence 
of PDO and PNA on temperature over Belgium at long 
time scales. This feature looks quite counter-intuitive. 
A conjecture is that this link is associated to the the 
long term dependence of PDO and PNA on large-scale 
Eurasian (or circumglobal) climate dynamics. The 
positive dependence tends to increase the variability of 
these patterns.

Finally, there is a marginal influence of temperature on 
AMO, TNA and El-Niño on time scales from a few months 
to a few years. Here the negative values suggest a control 
of the variability by the temperature over Western Europe. 
Again this feature illustrates the probable influence 
present from the Eurasian extratropical continent to the 
tropical region.

For the precipitation displayed in Figure 6, the depen-
dence on the large scale modes are the same as for 

Figure 4 The rate of information transfer as a function of the averaging sliding window. All interactions with NAO.
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Figure 5 The rate of information transfer as a function of the averaging sliding window. All interactions with T2m.
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Figure 6 The rate of information transfer as a function of the averaging sliding window. All interactions with Precipitation.
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temperature: The AO is influencing the variability of 
precipitation on short time scales, while on long time 
scales, this is the PNA influencing precipitation. The fact 
that both series, which are not showing dependencies 
between each other, are showing the same dependencies 
to PNA and AO provide a coherent signal of the dynamical 
influence of these large-scale atmospheric patterns on 
our region.

There is also a very interesting signal on the dependence 
of the PDO, AMO and TNA on precipitation for long time 
scales. As for temperature, this remote influence from 
a local variable should reflect a midlatitude influence of 
circumglobal atmospheric processes on key ocean patterns.

For the insolation (Figure 7), the only detected 
influence is from the AO on short time scale variability. 
On the other hand, an influence of the insolation is found 
for the PDO, AMO and TNA. Again the influence of this 
local variable should reflect the influence of circumglobal 
atmospheric variability on these patterns.

This particular feature of the local variables is intriguing 
and calls for additional investigations. The fact that the 
NAO does not influence the local variables suggests that 
the NAO and the processes associated with the remote 
influence of the local variables are not dependent on 
each other. The long term influence of NAO on AMO, PDO 
and TNA is probably not the origin of this dependence, 
unless more complicated nonlinear interactions are 

taking place. Is this related to the continental-ocean 
contrast or to other chains of processes? This is still an 
open question that cannot be answered without using 
additional climate indicators.

5. SUMMARY AND CONCLUSIONS
5.1. SUMMARY OF THE DEPENDENCIES
In the present work, a detailed analysis of the dependencies 
between a set of key climate indices (El-Niño 3.4, PDO, AMO, 
TNA, PNA, AO, NAO) and three local time series reflecing 
the local dynamics at monthly time scale over Belgium. 
The three latter time series have been chosen to clarify the 
role of large scale climate indices in a region of Western 
Europe over which long term forecasting are complicated 
(Cassou et al., 2018; Pegion et al., 2019; Merryfield et al., 
2020). The overall results indicate the complex nature of 
the interactions between the different observables whose 
dependencies are acting on different time scales.

The dependencies found in the present work can be 
split into three categories. First the dependencies that 
are emerging at all time scales explored from a month 
to 5 years. These involve El-Niño, PNA and PDO in the 
North and Tropical Pacific and NAO and AMO in the North 
Atlantic (yellow arrows in Figure 8). In this context, PDO 
and AMO seem to be predominantly driven by El-Niño, 
PNA and NAO.

Figure 7 The rate of information transfer as a function of the averaging sliding window. All interactions with Insolation.
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The link from NAO to AMO and AMO to PDO, reported 
in Nigam et al. (2020) is indeed confirmed by our current 
analysis, although they found cross-correlation links on 
time lags much larger than the time scales investigated 
here.

Second the dependencies on the variability at short 
time scales also displayed in Figure 8 (blue arrows). 
There are clearly dependencies within the ocean like for 
instance between AMO and TNA, probably related to the 
ocean tunnels, see, e.g., Liu and Alexander (2007). But 
more interestingly there is a strong influence of AO on 
many other observables. This influence occurs for sliding 
windows from a few months to a coupled of years, 

capturing seasonal to interannual variability. As such, AO 
can be considered as playing a key role in the network of 
dependencies in the climate system.

Finally there are dependencies emerging on long time 
scales, illustrated in Figure 9. In this case, the NAO plays a 
key role in the dynamics of the Climate system, influencing 
AO, PDO, TNA, El-Niño. This further indicates that both NAO 
and AO are key indices of the low-frequency variability 
of the Climate system but at different time scales. The 
influence of PDO (negative sign) on NAO reported in Nigam 
et al. (2020) is not confirmed by our analysis. Rather the 
opposite influence is found on time scales of the order of 
a few years.

Figure 8 Dependencies between the different observables at short (blue arrows) and all time scales (yellow arrows). The open blue 
arrows indicate weak dependencies as compared to the other ones. The label “all” indicates that all local variables are influenced by AO.

Figure 9 Dependencies between the different observables at long time scales (green arrows). The open green arrows indicate weak 
dependencies as compared to the other ones. The label “all” indicates that all local observables are influencing the target observable. 
T2m and Precip refer to temperature at 2 meters and precipitation, respectively.
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On the long term, the PNA pattern plays a role in the 
dynamics of the observables over Belgium. This feature 
is obviously interesting as it provides potential lines 
of research to setup forecasting systems at monthly, 
seasonal and decadal time scales over Belgium. This 
aspect will be pursued in the future. On the other hand, 
the observables recorded over Belgium display influences 
on the AMO, TNA, PDO, and El-Niño. This surprising result 
suggests that there is an influence of the continental 
extratropical regions over ocean basins on long time 
scales. Further analyses are needed using observables at 
continental scale. A conjecture on these dependencies is 
that these observables are embedded in the circumglobal 
circulation teleconnection pattern (CGT) discovered by 
Branstator (2002), displaying variability on a wide range 
of time scales, Ding et al. (2011); Soulard et al. (2021); 
Yang et al. (2021). The Belgium observables may display 
on long time scale the influence of the CGT, which in 
turn influences the Tropical Dynamics. This hypothesis is 
worth exploring in the future.

Other long term influences are also present between 
PNA and TNA, and between the different ocean compon-
ents, probably related to the long term dynamics of the 
world oceans such as the one isolated between PDO and 
AMO and El-Niño in Johnson et al. (2020).

5.2. LIMITATIONS AND FUTURE APPLICATIONS
The current analysis approach based on the rate of 
information flow on sliding averages is providing a 
very interesting way to disentangle the dependencies 
between indices at various time scales. It confirms some 
previous dependencies already found, but also indicates 
that some dependencies are unlikely. It is however clear 
that we did not use all the possible indices we could think 
of and limited oursevles to time scales from months 
to a few years. One possible caveat of our approach is 
that some dependencies attributed to the observables 
used are associated with some confounding factors. A 
possible example is the dependence of El-Niño on the 
temperature over Belgium. This dependence should 
probably be associated to a large scale pattern like for 
instance the circumglobal teleconnection pattern which 
was not used in the present work. The robustness of the 
results should therefore be investigated by adding other 
large scale indices.

This approach should also be used in the context of 
climate model runs in order to validate the dependencies 
that are accounted for by the models, and at the same time 
to confirm the dependencies that have been isolated here 
on short time series, using long climate model runs. One 
advantage of using climate models is that ensembles can 
be used that could further provide temporal information 
on the changes of dependencies like for instance in the 
recent applications of Hagan et al. (2019); Docquier et al. 
(2021), even under transient dynamics.

Finally, The dependencies found for the observables 
over Belgium could be further explored in order to build 
a stochastic model that would allow for performing 
long term forecasts from seasonal to interannual time 
scales.

APPENDIX A: DEPENDENCIES WITH 
PDO, TNA AND AMO

The main signals of an influence of PDO on the other 
observables are found for TNA and AMO as illustrated 
in Figure A1, while many observables are driving PDO. 
PDO is mostly controlled by the other key indices of 
variability.

Concerning the AMO, signals of influence are emerging 
for the PDO and TNA. A marginal signal is also found from 
AMO to the T2m over Belgium, see Figure A2.

For the TNA, clear links are emerging between El-Niño 
and AMO, as already discussed in the main result section. 
A marginal influence of TNA is also found on PDO and 
PNA as illustrated in Figure A3.

APPENDIX B: ROBUSTNESS OF THE 
RESULTS: TEST ON SURROGATES

In order to test the robustness of the results, a usual 
way to approach the problem is to build surrogates. This 
usually implies to build a model using assumptions on 
the statistical and dynamical properties of the series. 
The time series here have very different statistical 
and dynamical properties. Building surrogates should 
therefore be made by defining different models for 
the different processes at hand. It is clear for instance 
that for El-Niño, strong asymmetry exists that should 
be taken into account properly. Still the results based 
on these surrogates would be highly dependent on 
the assumptions made for the description of the time 
series.

An alternative to such an approach is to construct 
new series from the current series keeping as far as 
possible the statistical and dynamical properties of 
these observations. Here we propose to shift in time by a 
certain amount of months a few series, desynchronizing 
in that way the dataset. The shift is done in such way 
that the shifted data beyond the length of the series 
are now placed at the beginning of the time series. 
This approach allows for keeping both the nature of the 
temporal dependencies and the probability distribution 
of the data. This of course leads to a discontinuity at 
one place of the shifted series. We here assume that 
this discontinuity will not play a major role, and we 
also make sure that the tendency evaluated at this 
discontinuity point is fixed to 0 in order to avoid big 



153Vannitsem and Liang Tellus A: Dynamic Meteorology and Oceanography DOI: 10.16993/tellusa.44

Figure A1 The rate of information transfer as a function of the averaging sliding window. All interactions with PDO.
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Figure A2 The rate of information transfer as a function of the averaging sliding window. All interactions with AMO.
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Figure A3 The rate of information transfer as a function of the averaging sliding window. All interactions with TNA.
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Figure B1 The rate of information transfer as a function of the averaging sliding window. All interactions with El-Niño. Four time series 
are shifted in time: NAO, PNA, TNA and PDO series by amounts of 200 and 500, 300 and 700 months, respectively.
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spurious tendencies. A second assumption is to suppose 
that there are no large delays in the dependencies. 
Based on this assumption, we shift several time series by 
a certain amount of months, larger than the time scales 
of interest in the present work. 

The series that were shifted are the NAO, PNA, TNA 
and PDO series that were found to show very strong 
dependencies with the El-Niño series. NAO, PNA, TNA and 
PDO series are shifted toward positive times by amounts 
of 200 and 500, 300 and 700 months respectively. 
This choice (slightly arbitrary) is made in order to well 
desynchronize the two atmospheric series and the two 
ocean series, and at the same time to well desynchronize 
them from the El-Niño series (and avoid any strong 
delayed dependencies). The other series are not touched 
upon as they do not show strong dependencies with El-
Niño.

The results are displayed in Figure B1. All the original 
dependencies with NAO, PNA, TNA and PDO with El-Niño 
now disappeared (panels (d), (e), (g) and (i)), indicating 
that the strong dependencies found originally are 
associated with links which are synchronous in time. 
Moreover, the Liang-Kleeman quantities computed 
for the other time series with the El-Niño one do not 
change much. We only observe slight modifications of 
the amplitudes of the mean and of the spread around 
the mean of the bootstrap evaluations. A change should 
be expected as the estimations are now made with 
a different set of 10 time series with a normalization 
that depends on all dependencies. One particularly 
interesting feature present in the dependencies between 
the temperature at 2 meters in Uccle and El-Niño still 
persists at the 95% level. This supports the robustness of 
our estimates.
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