论文著作
2023
Yang, Y., X. San Liang, W. He, 2023: On the Formation and Maintenance of the Interannual Variability of the North Atlantic Oscillation. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-23-0100.1 [pdf]
Yang, Y., G. Fu, X. San Liang, Y. Liu, R. H. Weisberg, and J. Sheinbaum: Causal relations between the Loop Current penetration and the flow conditions in the Yucatan Channel and Florida Straits inferred with a rigorous quantitative causality analysis. Deep-Sea Res. I, DOI:10.1016/j.dsr2.2023.105298. [pdf]
Liang, X. San, D. Chen, R. Zhang, 2023: Quantitative causality, causality-aided discovery, and causal machine learning. Ocean-Land-Atmosphere Research 2023:2, Article 0026,, DOI: 10.34133/olar.0026.
Ma, J., X. S. Liang, and D. Chen, 2023: The role of multiscale interaction in the maintenance and propagation of MJO in boreal winter. Journal of Climate, 1, 1–41, https://doi.org/10.1175/JCLI-D-23-0332.1. [pdf]
Zhao, Y., X. S. Liang, and Y. Yang, 2023: The Kuroshio Intrusion Into the South China Sea at Luzon Strait Can Be Remotely Influenced by the Downstream Intrusion Into the East China Sea. Journal of Geophysical Research: Oceans, 128, e2023JC019868, https://doi.org/10.1029/2023JC019868.[pdf]
He, W.-B., Y. Yang, and X. S. Liang, 2023: Mechanisms for generating and connecting the Yanai-mode and Rossby-mode tropical instability waves in the equatorial Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 197, 104041, https://doi.org/10.1016/j.dsr.2023.104041. [pdf]
X. S. Liang, 2023: Quantitative causality analysis with coarsely sampled time series. [pdf]
Ma, J., and X. S. Liang, 2023: Upstream-downstream asymmetry in multiscale interaction underlying the Northern Hemisphere atmospheric blockings. Journal of the Atmospheric Sciences, 1, https://doi.org/10.1175/JAS-D-22-0220.1. [pdf]
Ma, J., and X. S. Liang, 2023: Distinctly Different Dynamical Processes in Maintaining the Intraseasonal NAO+ and NAO−. Geophysical Research Letters, 50, e2023GL103351, https://doi.org/10.1029/2023GL103351. [pdf]
Tyrovolas, M., X. S. Liang, and C. Stylios, 2023: A Novel Framework for Enhanced Interpretability in Fuzzy Cognitive Maps. https://doi.org/10.36227/techrxiv.22718032.v1. [pdf]
Vaid, B. H., and X. S. Liang, 2023: Additional Possible Cause of the Erratic 2009 Monsoon Over South and East Asia: Large-Scale Change in the Upper Tropospheric Temperature. Atmosphere-Ocean, 61, 162–172, https://doi.org/10.1080/07055900.2023.2177136. [pdf]
Yang, Y., G. Fu, X. S. Liang, R. H. Weisberg, and Y. Liu, 2023: Causal relations between the loop current penetration and the inflow/outflow conditions inferred with a rigorous quantitative causality analysis. Deep Sea Research Part II: Topical Studies in Oceanography, 209, 105298, https://doi.org/10.1016/j.dsr2.2023.105298. [pdf]2022
王美玲,梁湘三, 2022: 一次闽南暖区暴雨的多尺度动力学过程. 热带气象学报, 38(3), 467-480.
吴友婷、杨洋、梁湘三:基于自组织映射的日本南部黑潮与黑潮延伸体的典型时空模态及其因果关系研究。海洋学报44(9),38-54. [pdf]季页、杨洋、梁湘三, 2022:孟加拉湾海域背景流-中尺度涡-天气尺度扰动之间的相互作用。海洋学报, 44(9), 23-37, DOI: 10.12284/hyxb2022109.
何蔚邦、杨洋、梁湘三,2022:斯里兰卡以东海域涡旋偶极子的生成与维持机制。海洋科学进展,40(3),379-398 [pdf]
Lu, X., K. Liu, X. S. Liang, K. K. Lai, and H. Cui, 2022: The dynamic causality in sporadic bursts between CO2 emission allowance prices and clean energy index. Environ Sci Pollut Res, 29, 77724–77736, https://doi.org/10.1007/s11356-022-21316-5. [pdf]
Zhang, Y., and X. S. Liang, 2022: The distinct PNA pattern induced by the South China Sea. Clim Dyn, https://doi.org/10.1007/s00382-022-06607-4. [pdf]
Guo, Z., and X. S. Liang, 2022: Nexus of ambient flow and squall line via turbulence in the March 2018 meso-scale convective system over Southeast China. Atmospheric Research, 277, 106287, https://doi.org/10.1016/j.atmosres.2022.106287. [pdf]
Docquier, D., S. Vannitsem, F. Ragone, K. Wyser, and X. San. Liang, 2022: Causal Links Between Arctic Sea Ice and Its Potential Drivers Based on the Rate of Information Transfer. Geophysical Research Letters, 49, e2021GL095892, https://doi.org/10.1029/2021GL095892. [pdf]
Vannitsem, S., and X. San. Liang, 2022: Dynamical dependencies at monthly and interannual time scales in the Climate system: Study of the North Pacific and Atlantic regions. Tellus A: Dynamic Meteorology and Oceanography, 74, https://doi.org/10.16993/tellusa.44. [pdf]
王思雯, 杨洋, 梁湘三, 赵宇慧, and 王长友, 2022: 东海黑潮上下游不同的涡动能季节变化特征及其产生机制. 海洋与湖沼, 53, 278–294, https://doi.org/10.11693/hyhz20211000236. [pdf]
Rong, Y. N., and X. San. Liang, 2022: An information flow-based sea surface height reconstruction through machine learning. IEEE Transactions on Geoscience and Remote Sensing, 1–1, https://doi.org/10.1109/TGRS.2022.3140398. [pdf]
Zhang, Z., and X. San. Liang, 2022: Multiscale Interactive Processes Underlying the Heavy Rainstorm Associated with a Landfalling Atmospheric River. Atmosphere, 13, 29, https://doi.org/10.3390/atmos13010029. [pdf]
X. San Liang, 2022: The Causal Interaction between Complex Subsystems. Entropy, 24, 3, https://doi.org/10.3390/e24010003. [pdf]
2021
Zhang, Y. C., and X. San. Liang, 2021: The causal role of
South China Sea on the Pacific–North American teleconnection pattern. Clim
Dyn, https://doi.org/10.1007/s00382-021-06070-7. [pdf]
Zhao, Y. H., Y. Yang, X. San
Liang, and Y. Zhang, 2021: Different mechanisms for the seasonal variations of
the mesoscale eddy energy in the South China Sea. Deep Sea Research Part I:
Oceanographic Research Papers, 103677, https://doi.org/10.1016/j.dsr.2021.103677. [pdf]
X.
San Liang, 2021. Measuring the importance of individual units in
producing the collective behavior of a complex network. Chaos 31, 093123.
https://doi.org/10.1063/5.0055051. [pdf]
Yang, Y., X. San. Liang, and
H. Sasaki, 2021: Vertical coupling and dynamical source for the intraseasonal
variability in the deep Kuroshio Extension. Ocean Dynamics, 71,
1069–1086, https://doi.org/10.1007/s10236-021-01482-9. [pdf]
X. San Liang, Xu, F., Rong, Y., Zhang, R., Tang, X., Zhang, F., 2021. El Niño Modoki can be mostly predicted more than 10 years ahead of time. Sci Rep 11, 17860. https://doi.org/10.1038/s41598-021-97111-y. [pdf]
Xu, F., and X.
San Liang, 2021: Drastic change in dynamics as Typhoon Lekima experiences an eyewall
replacement cycle. Front. Earth Sci.,
https://doi.org/10.1007/s11707-020-0865-6. [pdf]
容逸能, 马继望, 李瑶婷, 梁湘三, 2021: 一次自上向下发展的高原涡的多尺度动力学分析. 气象科技进展, 11, 7–18. [pdf]
Quan, Qi, Liu, Zhiqiang, Sun, Shantong, Cai, Zhongya, Yang, Y., Jin, Guangzhen and X. San Liang. 2021. Influence of the Kuroshio Intrusion on Deep Flow Intraseasonal Variability in the Northern South China Sea. Journal of Geophysical Research: Oceans. 10.1029/2021JC017429. [pdf]
X. San Liang. 2021. Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction.
Entropy. 23. 679. 10.3390/e23060679. [pdf]
Rong, Y. N. and X. San Liang. 2021. Panel data causal inference using a rigorous information flow analysis for homogeneous, independent and identically distributed datasets. IEEE Access. PP. 1-1. 10.1109/ACCESS.2021.306827. [pdf]
X. San Liang and Yang, Xiu-Qun. 2021. A Note on Causation Versus Correlation in an Extreme Situation. Entropy. 23. 316. 10.3390/e23030316. [pdf]
Yang, Yang, McWilliams, James, X. San Liang, Zhang, Hong, Weisberg, Robert, Liu, Yonggang ,and Menemenlis, Dimitris. 2021. Spatial and Temporal Characteristics of the Submesoscale Energetics in the Gulf of Mexico. Journal of Physical Oceanography. 51. 475–489. 10.1175/JPO-D-20-0247.1. [pdf]
X. San Liang and Hu, Jianyu. 2021.
Absolute instabilities in the spatially developing Kuroshio Extension. Dynamics
of Atmospheres and Oceans. 93. 10.1016/j.dynatmoce.2021.101205. [pdf]
Yang, Y. L., Y. Zhang, X. San.
Liang, Q. Cheng, and J. Y. Tsou, 2021: Evolution of Arctic Ocean surface
circulation from 1958 to 2017. Global and Planetary Change, 206,
103638, https://doi.org/10.1016/j.gloplacha.2021.103638. [pdf]
Tao, L., X. San Liang, L. Cai, J. Zhao, and M. Zhang, 2021: Relative contributions of global warming, AMO and IPO to the land precipitation variabilities since 1930s. Clim Dyn, https://doi.org/10.1007/s00382-020-05584-w. [pdf]
2020
Xunfa Lu, Kai Liu, X. San Liang, Zhengjun Zhang, and Hairong Cui, 2020:The Break Point-Dependent Causality between the Cryptocurrency and Emerging Stock Markets. Economic Computation and Economic Cybernetics Studies and Research, DOI: 10.24818/18423264/54.4.20.13. [pdf]
Xu F., and X. San Liang, 2020: The synchronization between the zonal jet stream and temperature anomalies leads to an extremely freezing North America in January 2019. Geophysical Research Letters, DOI: 10.1029/2020GL089689. [pdf]
Xiao, H., F. Zhang, L. Miao, X. San Liang, K. Wu, and R. Liu, 2020: Long-term trends in Arctic surface temperature and potential causality over the last 100 years. Climate Dynamics, 55, 1443–1456, https://doi.org/10.1007/s00382-020-05330-2. [pdf]
Vaid, B. H., and X. San Liang, 2020: Effect of Upper Tropospheric Vertical Thermal Contrast Over the Mediterranean Region on Convection over the Western Tibetan Plateau during ENSO Years. Atmosphere-Ocean, 58, 98–109, https://doi.org/10.1080/07055900.2020.1751048. [pdf]
Yang, Y., R. H. Weisberg, Y. Liu, and X. San Liang, 2020: Instabilities and Multiscale Interactions Underlying the Loop Current Eddy Shedding in the Gulf of Mexico. J. Phys. Oceanogr., 50, 1289–1317, https://doi.org/10.1175/JPO-D-19-0202.1. [pdf]
赵远冰, 梁湘三, 2020: 韩国义城郡垃圾燃烧排放对东亚沿海城市PM_(2.5)浓度的影响. 2020中国环境科学学会科学技术年会论文集(第一卷), 10. [pdf]
李刚, 马继望, 梁湘三. 2020: 2008年1月中国南方低温雨雪期间异常阻塞高压事件的多尺度动力过程分析. 气象学报, 78(1): 18-32. [pdf]
徐芬, 梁湘三. 2020: 一次典型的平流层爆发性增温中的局地多尺度洛伦兹循环. 大气科学学报, 43, 336-446. [pdf]
马继望, 梁湘三. 2020: 大西洋阻塞高压上层冷中心的成因. 大气科学学报, 43, 469–480. [pdf]
2019
Ji, C., Y. Zhang, Q. Cheng, Y. Li, T. Jiang, and X. San Liang, 2019: Analyzing the variation of the precipitation of coastal areas of eastern China and its association with sea surface temperature (SST) of other seas. Atmospheric Research, 219, 114–122, https://doi.org/10.1016/j.atmosres.2018.12.027. [pdf]
X. San Liang, 2019: A Study of the Cross-Scale Causation and Information Flow in a Stormy Model Mid-Latitude Atmosphere. Entropy, 21, 149, https://doi.org/10.3390/e21020149. [pdf]
Tawia Hagan, D. F., G. Wang, X. San Liang, and H. A. J. Dolman, 2019: A Time-Varying Causality Formalism Based on the Liang–Kleeman Information Flow for Analyzing Directed Interactions in Nonstationary Climate Systems. J. Climate, 32, 7521–7537, https://doi.org/10.1175/JCLI-D-18-0881.1. [pdf]
Vaid, B. H., and X. San Liang, 2019: The Out-of-Phase Variation in Vertical Thermal Contrast Over the Western and Eastern Sides of the Northern Tibetan Plateau. Pure Appl. Geophys., https://doi.org/10.1007/s00024-019-02268-3. [pdf]
Yang, Y., and X. San Liang, 2019: Spatiotemporal Variability of the Global Ocean Internal Processes Inferred from Satellite Observations. J. Phys. Oceanogr., 49, 2147–2164, https://doi.org/10.1175/JPO-D-18-0273.1. [pdf]
Yang, Y., and X. San Liang, 2019: New Perspectives on the Generation and Maintenance of the Kuroshio Large Meander. J. Phys. Oceanogr., 49, 2095–2113, https://doi.org/10.1175/JPO-D-18-0276.1. [pdf]
Yang, Y., and X. San Liang, 2019: The intrinsic nonlinear multiscale interactions among the mean flow, low frequency variability and mesoscale eddies in the Kuroshio region. Sci. China Earth Sci., 62, 595–608, https://doi.org/10.1007/s11430-018-9289-4. [pdf]
Zhao, Y.B., and X. San Liang, 2019: Charney’s Model—the Renowned Prototype of Baroclinic Instability—Is Barotropically Unstable As Well. Adv. Atmos. Sci., 36, 733–752, https://doi.org/10.1007/s00376-019-8189-8. [pdf]
Zhao Y. B., and X. San Liang, 2019: Causes and underlying dynamic processes of the mid-winter suppression in the North Pacific storm track. Sci. China Earth Sci., 62, 872–890, https://doi.org/10.1007/s11430-018-9310-5. [pdf]
Zhao Y. B., and X. San Liang, Z. Guan, and K. I. Hodges, 2019: The asymmetric eddy–background flow interaction in the North Pacific storm track. Quarterly Journal of the Royal Meteorological Society, 145, 575–596, https://doi.org/10.1002/qj.3453. [pdf]
2018
Hu, J., X. San Liang, and H. Lin, 2018: Coastal Upwelling Off the China Coasts. Coastal Environment, Disaster, and Infrastructure - A Case Study of China’s Coastline, X.S. Liang and Y. Zhang, Eds., InTech. [pdf]
Ji, C., Y. Zhang, Q. Cheng, Y. Li, T. Jiang, and X. San Liang, 2018: On the relationship between the early spring Indian Ocean’s sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer. Global and Planetary Change, 164, 1–10, https://doi.org/10.1016/j.gloplacha.2018.02.011. [pdf]
Ji, C., Y. Zhang, Q. Cheng, J. Tsou, T. Jiang, and X. San Liang, 2018: Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea. International Journal of Applied Earth Observation and Geoinformation, 68, 252–261, https://doi.org/10.1016/j.jag.2018.01.020. [pdf]
X. San Liang, 2018: Causation and information flow with respect to relative entropy. Chaos, 28, 075311, https://doi.org/10.1063/1.5010253. [pdf]
X. San Liang, 2018: The Slow Coastal-Trapped Waves off Subei Bank in the Yellow Sea and Their Climatic Change in the Past Decades. Coastal Environment, Disaster, and Infrastructure - A Case Study of China’s Coastline, X.S. Liang and Y. Zhang, Eds., InTech. [pdf]
X. San Liang, and Rong Y. N., 2018: Nuclear Pollution in the East China Sea from the Fukushima Disaster. Coastal Environment, Disaster, and Infrastructure - A Case Study of China’s Coastline, X.S. Liang and Y. Zhang, Eds., InTech. [pdf]
X. San Liang, and Wang L., 2018: The Cyclogenesis and Decay of Typhoon Damrey. Coastal Environment, Disaster, and Infrastructure - A Case Study of China’s Coastline, X.S. Liang and Y. Zhang, Eds., InTech. [pdf]
X. San Liang, M. Huang, H. Wu, and Y. Wang, 2018: The Yellow Sea Surface Cold Patches in Warm Seasons. Coastal Environment, Disaster, and Infrastructure - A Case Study of China’s Coastline, X.S. Liang and Y. Zhang, Eds., InTech. [pdf]
X. San Liang, Y. Zhang, C. Dong, and X. Wang, 2018: Preface: Coastal-Ocean Issues and Inland Water Pollution Effects on Environmental Change. Atmosphere-Ocean, 56, 197–198, https://doi.org/10.1080/07055900.2018.1511272. [pdf]
Rong Y. N., and X. San Liang, 2018: A Study of the Impact of the Fukushima Nuclear Leak on East China Coastal Regions. Atmosphere-Ocean, 56, 254–267, https://doi.org/10.1080/07055900.2017.1421139. [pdf]
Vaid, B. H., and X. San Liang, 2018: The changing relationship between the convection over the western Tibetan Plateau and the sea surface temperature in the northern Bay of Bengal. Tellus A: Dynamic Meteorology and Oceanography, 70, 1440869, https://doi.org/10.1080/16000870.2018.1440869. [pdf]
Vaid, B. H., and X. San Liang, 2018: An Abrupt Change in Tropospheric Temperature Gradient and Moisture Transport Over East Asia in the Late 1990s. Atmosphere-Ocean, 56, 268–276, https://doi.org/10.1080/07055900.2018.1429381. [pdf]
Vaid, B. H., and X. San Liang, 2019: Influence of tropospheric temperature gradient on the boreal wintertime precipitation over East Asia. Terr. Atmos. Ocean. Sci., 30, 161–170, https://doi.org/10.3319/TAO.2018.10.24.01. [pdf]
Wang, J., M. Li, X. San Liang, X. Wang, F. Xue, M. Peng, and C. Miao, 2018: Regional Characteristics of Typhoon-Induced Ocean Eddies in the East China Sea. Adv. Atmos. Sci., 35, 826–838, https://doi.org/10.1007/s00376-017-7173-4. [pdf]
Yang, Y., and X. San Liang, 2018: On the Seasonal Eddy Variability in the Kuroshio Extension. J. Phys. Oceanogr., 48, 1675–1689, https://doi.org/10.1175/JPO-D-18-0058.1. [pdf]
Zhang, Y., H. Duan, H. Xi, Z. Huang, J. Tsou, T. Jiang, and X. San Liang, 2018: Evaluation of the Influence of Aquatic Plants and Lake Bottom on the Remote-Sensing Reflectance of Optically Shallow Waters. Atmosphere-Ocean, 56, 277–288, https://doi.org/10.1080/07055900.2018.1454295. [pdf]
Zhang, Y., M. Hallikainen, H. Zhang, H. Duan, Y. Li, and X. San Liang, 2018: Chlorophyll-a Estimation in Turbid Waters Using Combined SAR Data With Hyperspectral Reflectance Data: A Case Study in Lake Taihu, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1325–1336, https://doi.org/10.1109/JSTARS.2017.2789247. [pdf]
Zhang, Y., Z. Huang, D. Fu, J. Y. Tsou, T. Jiang, X. San Liang, and X. Lu, 2018: Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data. International Journal of Applied Earth Observation and Geoinformation, 67, 173–178, https://doi.org/10.1016/j.jag.2018.01.017. [pdf]
赵远冰,梁湘三,朱伟军. 2018. 东亚地区南北两个风暴源地中风暴的结构和动力学差异. 气象学报,76(5) :663-679. [pdf]
Zhao Y. B., and X. San Liang, 2018: On the Inverse Relationship between the Boreal Wintertime Pacific Jet Strength and Storm-Track Intensity. J. Climate, 31, 9545–9564, https://doi.org/10.1175/JCLI-D-18-0043.1. [pdf]
Bai, C., R. Zhang, S. Bao, X. San Liang, and W. Guo, 2018: Forecasting the Tropical Cyclone Genesis over the Northwest Pacific through Identifying the Causal Factors in Cyclone–Climate Interactions. J. Atmos. Oceanic Technol., 35, 247–259, https://doi.org/10.1175/JTECH-D-17-0109.1. [pdf]
2017
Cai, J., Y. Zhang, Y. Li, X. San Liang, and T. Jiang, 2017: Analyzing the Characteristics of Soil Moisture Using GLDAS Data: A Case Study in Eastern China. Applied Sciences, 7, 566, https://doi.org/10.3390/app7060566. [pdf]
Huang M. H., X. San Liang, H. Wu, and Y. Wang, 2018: Different Generating Mechanisms for the Summer Surface Cold Patches in the Yellow Sea. Atmosphere-Ocean, 56, 199–211, https://doi.org/10.1080/07055900.2017.1371580. [pdf]
卢慧超,梁湘三,容逸能,2017. 基于局地多尺度能量涡度分析法(MS-EVA)的北半球夏季西太平洋MJO动能分析[J]. 大气科学学报,40(2):224-322. [pdf]
X. San Liang, 2017: The Seasonally Varying Monsoon Wind May Suppress the Western Boundary Current in the South China Sea. Fisheries and Oceanography, 3, 555601, https://doi.org/10.19080/OFOAJ.2017.03.555601. [pdf]
Ma J. W., and X. San Liang, 2017: Multiscale Dynamical Processes Underlying the Wintertime Atlantic Blockings. J. Atmos. Sci., 74, 3815–3831, https://doi.org/10.1175/JAS-D-16-0295.1. [pdf]
Wang L., and X. San Liang, 2017: A Diagnosis of Some Dynamical Processes Underlying a Higher-Latitude Typhoon Using the Multiscale Window Transform. Atmosphere, 8, 118, https://doi.org/10.3390/atmos8070118. [pdf]
Xu F., and X. San Liang, 2017: On the Generation and Maintenance of the 2012/13 Sudden Stratospheric Warming. J. Atmos. Sci., 74, 3209–3228, https://doi.org/10.1175/JAS-D-17-0002.1. [pdf]
Yang, Y., X. San Liang, B. Qiu, and S. Chen, 2017: On the Decadal Variability of the Eddy Kinetic Energy in the Kuroshio Extension. J. Phys. Oceanogr., 47, 1169–1187, https://doi.org/10.1175/JPO-D-16-0201.1. [pdf]
游佳慧,梁湘三,2017. MJO特征的多尺度子空间重构. 大气科学学报,40(1):25-35. [pdf]
Zhang, Y., Y. Li, X. San Liang, and J. Tsou, 2017: Comparison of Oil Spill Classifications Using Fully and Compact Polarimetric SAR Images. Applied Sciences, 7, 193, https://doi.org/10.3390/app7020193. [pdf]
2016
X. San Liang, 2016: Information flow and causality as rigorous notions ab initio. Phys. Rev. E, 94, 052201, https://doi.org/10.1103/PhysRevE.94.052201. [pdf]
X. San Liang, 2016: Canonical Transfer and Multiscale Energetics for Primitive and Quasigeostrophic Atmospheres. J. Atmos. Sci., 73, 4439–4468, https://doi.org/10.1175/JAS-D-16-0131.1. [pdf]
X. San Liang, 2016: Exploring the Big Data Using a Rigorous and Quantitative Causality Analysis. Journal of Computer and Communications, 04, 53, https://doi.org/10.4236/jcc.2016.45008. [pdf]
X. San Liang, and A. Lozano-Durán, 2016: A preliminary study of the causal structure in fully developed near-wall turbulence. Proceedings of the Summer Program 2016. [pdf]
容逸能,徐瑞,梁湘三, 赵远冰. 福岛核泄漏事件对中国海污染的研究. 环境科学学报,36(9):3146-3159. [pdf]
Stips, A., D. Macias, C. Coughlan, E. Garcia-Gorriz, and X. San Liang, 2016: On the causal structure between CO2 and global temperature. Scientific Reports, 6, 21691, https://doi.org/10.1038/srep21691. [pdf]
Yang, Y., and X. San Liang, 2016: The Instabilities and Multiscale Energetics Underlying the Mean–Interannual–Eddy Interactions in the Kuroshio Extension Region. J. Phys. Oceanogr., 46, 1477–1494, https://doi.org/10.1175/JPO-D-15-0226.1. [pdf]
Zhao Y. B., X. San Liang, and J. Gan, 2016: Nonlinear multiscale interactions and internal dynamics underlying a typical eddy-shedding event at Luzon Strait. Journal of Geophysical Research: Oceans, 121, 8208–8229, https://doi.org/10.1002/2016JC012483. [pdf]
Selected Publications before 2015
X. San Liang, 2015: Normalizing the causality between time series. Phys. Rev. E, 92, 022126, https://doi.org/10.1103/PhysRevE.92.022126. [pdf]
Vaid, B. H., and X. San Liang, 2015: Tropospheric temperature gradient and its relation to the South and East Asian precipitation variability. Meteorol Atmos Phys, 127, 579–585, https://doi.org/10.1007/s00703-015-0385-1. [pdf]
X. San Liang, 2014: Unraveling the cause-effect relation between time series. Phys. Rev. E, 90, 052150, https://doi.org/10.1103/PhysRevE.90.052150. [pdf]
X. San Liang, 2014: Entropy Evolution and Uncertainty Estimation with Dynamical Systems. Entropy, 16, 3605–3634, https://doi.org/10.3390/e16073605. [pdf]
X. San Liang, 2013: Local predictability and information flow in complex dynamical systems. Physica D: Nonlinear Phenomena, 248, 1–15, https://doi.org/10.1016/j.physd.2012.12.011. [pdf]
X. San Liang, 2013: The Liang-Kleeman Information Flow: Theory and Applications. Entropy, 15, 327–360, https://doi.org/10.3390/e15010327. [pdf]
X. San Liang, and A. R. Robinson, 2013: Absolute and convective instabilities and their roles in the forecasting of large frontal meanderings. J. Geophys. Res. Oceans, 118, 5686–5702, https://doi.org/10.1002/jgrc.20406. [pdf]
X. San Liang, 2012: Multiscale Window Interaction and Localized Nonlinear Hydrodynamic Stability Analysis. Advanced Fluid Dynamics, InTech, 159–182. [pdf]
X. San Liang, 2011: Uncertainty generation in deterministic flows: Theory and application with an atmospheric jet stream model. Dynamics of Atmospheres and Oceans, 52, 51–79, https://doi.org/10.1016/j.dynatmoce.2011.03.003. [pdf]
X. San Liang, 2010: Information Flow and Causality Quantification in Discrete and Continuous Stochastic Systems. Stochastic Control, InTech, 229–352. [pdf]
Haley, P.J., P.F.J. Lermusiaux, A.R. Robinson, W.G. Leslie, O. Logoutov, G. Cossarini, X. San Liang, P. Moreno, S.R. Ramp, J.D. Doyle, J. Bellingham, F. Chavez, S. Johnston, 2009: Forecasting and reanalysis in the Monterey Bay/California Current region for the Autonomous Ocean Sampling Network-II experiment. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 127–148, https://doi.org/10.1016/j.dsr2.2008.08.010. [pdf]
Ramp, S.R., R.E. Davis, N.E. Leonard, I. Shulman, Y. Chao, A.R. Robinson, J. Marsden, P. Lermusiaux, D. Fratantoni, J.D. Paduan, F. Chavez, F.L. Bahr, X. San Liang, W. Leslie, and Z. Li, 2009: Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 68–86, https://doi.org/10.1016/j.dsr2.2008.08.013. [pdf]
X. San Liang, 2008: Information flow within stochastic dynamical systems. Phys. Rev. E, 78, 031113, https://doi.org/10.1103/PhysRevE.78.031113. [pdf]
X. San Liang, 2008: A generic approach to the dynamical interpretation of ocean-atmosphere processes. Acta Oceanologica Sinica, 27, 74–92. [pdf]
X. San Liang, and A. R. Robinson, 2008: Multiscale Processes and Nonlinear Dynamics of the Circulation and Upwelling Events off Monterey Bay. Journal of Physical Oceanography, 39, 290–313, https://doi.org/10.1175/2008JPO3950.1. [pdf]
X. San Liang, and D. G. M. Anderson, 2007: Multiscale Window Transform. Multiscale Model. Simul., 6, 437–467, https://doi.org/10.1137/06066895X. [pdf]
X. San Liang, and R. Kleeman, 2007: A rigorous formalism of information transfer between dynamical system components. I. Discrete mapping. Physica D: Nonlinear Phenomena, 231, 1–9, https://doi.org/10.1016/j.physd.2007.04.002. [pdf]
X. San Liang, and R. Kleeman, 2007: A rigorous formalism of information transfer between dynamical system components. II. Continuous flow. Physica D: Nonlinear Phenomena, 227, 173–182, https://doi.org/10.1016/j.physd.2006.12.012. [pdf]
X. San Liang, and A. R. Robinson, 2007: Localized multi-scale energy and vorticity analysis: II. Finite-amplitude instability theory and validation. Dynamics of Atmospheres and Oceans, 44, 51–76, https://doi.org/10.1016/j.dynatmoce.2007.04.001. [pdf]
Liu, Y., X. San Liang, and R. H. Weisberg, 2007: Rectification of the Bias in the Wavelet Power Spectrum. J. Atmos. Oceanic Technol., 24, 2093–2102, https://doi.org/10.1175/2007JTECHO511.1. [pdf]
X. San Liang, and R. Kleeman, 2005: Information Transfer between Dynamical System Components. Phys. Rev. Lett., 95, 244101, https://doi.org/10.1103/PhysRevLett.95.244101. [pdf]
X. San Liang, and A. R. Robinson, 2005: Localized multiscale energy and vorticity analysis: I. Fundamentals. Dynamics of Atmospheres and Oceans, 38, 195–230, https://doi.org/10.1016/j.dynatmoce.2004.12.004. [pdf]
X. San Liang, and A. R. Robinson, 2004: A study of the Iceland-Faeroe frontal variability using the multiscale energy and vorticity analysis. Journal of physical oceanography, 34, 2571–2591. [pdf]
X. San Liang, and M. Wang, 2004: A study of turbulent wake dynamics using a novel localized stability analysis. Proceedings of the Biennial CTR Program, Stanford-NASA Ames, 211–220. [pdf]
X. San Liang, and Thomas Carter, 2004: Money distribution in a simple economy. Inter Journal Complex Systems, CX4, 1117. [pdf]